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THE OPTIMAL ‘ASSIGNMENT PROBLEM

’

1. Description of the Problem -

: The optlmal assignment problem is concerned with
sttuatlons of the following kind: - a certain company
hasﬁg number of job openings and there aresa number .
of .applicants available for the jobs. The. company S .
probYem is to decide how to 3551gn appllcants to jobs
in a way. which will maximize the benefit to the com-
\ {\\pany. Before making the assignment each appllcant
1s given a set of tests which are designed to measure
» his aptitude for each of-the JObS
can be displayed by means of a tabqe as, illustrated’
below for the case of three appllcantf and three jobs
: J?k J2 “JS
) 10

o

(1.1)

4

6 | 4°| o

The number in ‘row i and column j of the table
which we call: posztzon (i, g1ves the SCOTE of ‘the
ifh applicant for the j th JOb
these aptitudes as measuring’ the value of the appll-
cant to the ‘company when assigned to the given job.
Thus, in the example Ar’ls worth, say, 10 dollars
Per hour when assigned to J but only 7 dollars pir
hour when assigned to J3 If the scores are inter- .
preted fﬁ‘thls way then clearly the .company will
ach1eve maximum benef1t by 3551gn1ng applicants in
such a.way as to maximize the sum of the *scores.
Such an assignmént is called an_optimal assignment,
In the example the optimal assignment‘can be found
by inspection, for observe that A is best ‘at Jl,

A, is best at J, and A; is best at Jg.® Therefore

--

Aruitoxt provided by Eic:

hese test geores-

“'One may think of .

Y

.

the optimal assignment is obtained by assigning each .

. person to the job he does best. It is convenient to
1nd1cate the 3551gnment by checking “the correspondlng )
entrxes 1n the table as 1nd1cated below:

’ « 1 9 Jg

10/ 8 | 7

. s

q1.2) . 4| s/| 3

6 4 9v-

—_—
Nithout making any further calculation we know that

the assignhent checked in (1. 2) is optimal, for since
every. applicant is 3551gned to the job he does best,

. No .other assxgnment could raise the scoré of any applq-
cant, hence the total score can not .be raised,

Of course there was considerable luck in the above
exdample, for it was simply fortuitous that each appli-.
«~ €ant was best at a.different job.

expect this to happen.

In generial one cannot
tHlere is another example:

I T, Js
10/

8 | 4 %

6 9v| 4

. \

Notlce that in this case it is no longer p0551b1e ‘to
assign each person to the job he does best, fo* both A
and A2 are best at J Nevertheless the optimal solutlon
is easily found by changlng the p01nt of view. Instead -
of trying to assign each appllcant to the job he does
best we try to plck the best man for each job. The best
man for J, is Al’ for J, is L and for J Jg is A"

Therefore the optimal assignment is :BF bne given by the
checked entries in (1 3). . .
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" The procedure used in these-examples'can be described
“the tables like (1.1), (1.2), and
In the first’
example we-chose the largest ertry in each rowy It

- & A
concisely as follows:

*(1.3) ar€ called asstignment matrices.

turned out that each of these entries was.in a different
.¢olumn so that ‘an ass1gnment was obtained which, was,
N . therefore opt1ma1 In such cases we will ,say “that the
- - - L)

* matrix in question has a row- .max a$s1gnment Iw the .
second example the matT1x did not have a FaW-max ass1gn-

-
[}

ment but it did have a column-max a551gnment meaning
‘" that the max1mum entries in each columa were all in
different rows. Now in general a matpix need not have

gither a row- or column-max "gssignment as the following

exahple il%yst}ates: - o L. Lt
Aty I, I3
) A *0 187 ) .
(1.4) v A, | 8 42| 3
. B : AR ER .
7 T . ) - . ,
‘ One sees at oncg that neither of the foregbihg . ‘}H

methods works, for if each person was assigned to thea_ .

JOb he does best, then everyone wouId ﬁe assigned to By
Jl’ and if each job was given to the besfnman for the
job, then A1 would be ass1gned to all three johs It
is claimed that the optlmal assignment isy given by the
checked entrles, whlch glve the total value of the
a551gnment to be 7 + 8 + 6 = 21. The reader should
'." ver1fy that this is optimal by 51mp1y trying each of .
" the other five possible ass1gnments and observ1ng_that
they give a lower total score.

" note the following facts.

The reader should also
In this optimal assignmegt ’
only one applicant, Ay, is assigned to the job he does
bést, and in fact, A, is assigned to J3, the job he does
worst. szﬁalse

for the ng.

only J3 is a551gned to the best man

Nevertheless, as we have seen, "this

ERIC 5 9

s ’

~
[

’ . .
< assignment is optimal, and this -suggests that '"common
sense methods" will npt be very helpful in solving such

) problems and that sﬂ:e kind of "theory'" is needed.

Of course for s

‘find a solution by Wtrlal and error, L meaning one

all 3x3 examples ene can always
simply llsts all p0$s1b1e assignments and chooses the

one w1th the largesq value. This procédure, however,
is clearly 1mpract1ca1 for even moderate sized problems
For' example, if one! were to use the\method on a 5%5
" problem it would reqU1re 11at1ng 120-possibilitaies
each of, which would involye performlng 4 additions S0
that 480 additions would be required. The method to,
be presented in these notes will enable the reader
to solve 8x8 problems by Rand in a very moderate amount .

, of time.

. [

If one were to do this by listing all
- possibilities it would’ requ1re over .250,000 additions.

-

In a general a551gnmeng problem the number of jobs
and“appllcants need not be equal.
app11cant§)than jobs (m > n) in wh1ch cage the company
will hire the n applicants g1v1ng it the highest total
value, or there may be more jobs than applicants (n > m)
in which case the company w1?1 fill the m JObS which
give. the h1ghest total value. However, there is a
simple trick whereby all problems can be'reduced to

+ the "square" case in which the number of jobs and
.applicants are equal. If, say, m > n then the assign-
ment matr1x has more rows-than columns )

There may be more

Then'one

d s1mp1y augments the matrix by addlng m - n additional

,columns 411 of .whose entries are zero. Th1s gives an

mxm matrix with m - n additional "dummy" jébs which

may be thoﬁght of as the job of being Unemployed. Now .
ctearly if one finds the solution to this problem one

has also obta1ned the solutlon to the original problen,

for assigning a person to a dummy job means not assigning ,

in a similar wa

_ Thé reader should

’ ' 4
v \

him at.all in the’ ori'ginal problem.
if m < n one adds n - m rows of zeros.

N




-«
3 ‘ ~ . - .
. conv1nce himself that a squt1on,to this n x n problem
s also solves the original m x n problem. From now.on
T wesill restrict ourselves to the' square case 'Thls

v

perm1ts us to formalize the notion of an asSJgnment\ln
the folIOW1ng way.

\ L]

DEFINITION. An n » n assiihment‘pmoﬁlou consists of an

n X n matrix A. An assignment z consists of a permutation

iy, i,, .., i ] of the integers from 1 to n. Thuis
5/// . 1is to be read as follows: in“the assignfent a applicant
. Ay is assjigned to job Jl\q applicant A", 1s assigned to

T joh f iy etc. The value of the assignment 1,~denoted by
Fd

v(a) is the numBer a11 ta,rox ... +a

.. . An assign-
2 ni . ~ g .

n :
ment a having the ma mum «value among Aall possible

ass1gnm3nt§ is cailed an'optimal’ aeszgnment

Using the above ’ notat1on the vptimal ass1gnnent for
1.1 -
‘( -) is [l- , 3] with value ay] * ay, tagg = 27. The
~~ optimal assignment for (1.3) is [1] 3, 2] with value
\
» 8y * 8,3 * 3z, N 26 and the optimal assignment for
. (1.8) i i ~ -
( ) 1s_[?, 1, 2] with the value ajz * 3, ¥ ag, %3.

v

Exércises A ’ ‘ LY

1. How many possible ‘assignments arg therevin an nxn problem?"
« 4

.

<2 For thé&patrix below calculate the value of each of “the . v
/} { following assignments:

[1, 2,3, 41 (4, 3, 2, 11 3,1, 2, 4] [2, 4, &, 1] .
5 8 @)

. - , % 7 7 s ’
- . / . ’
o e o ve |
. . @ & 5 4 T e "‘ .
%, » For the above matrix Jrite in the fgrm [»]? 2 13, h] {
the assignment correspondung to the checked entries of
A the matr Do the cnrcled entrues above correspodd to
an asslgnment? Why?
v » g’
R ¢ - . H
* \
\ \ 4 . .
Q 10 .

ERIC ,

..
o
== . .

Befdre proceedlnb to develop the théory. fofwthe
‘as'signment problem it Is worthwhile pointing out gne
“further property of such problems ® We veturn to the
‘th1Yd example given by the table ' )

-
Al
) B L S S
R \ -
; L Ap {10 | 8 | oy
(2.1 S Taylesias
' . - o .
. Ay 15 | 6/1-4 ~ %

wherb the entrle\ In the optimal assxahment have been

<

. checked. Now suppose a fourths appllcant A4 appears, 1s
tested, and obtains the £0110w1ng scores” v’ ’

- ; r . - . )

Jl'.JZ J3 -

(z.2y -~ ~ A 2 3 5 R
. ©
N The quest1bn which now arises 1s uhether A4 <hould
'replace any of the three appllcants of the or1g1na1 o4

asslgnment Observe that his test scordg for .each
job are lower by 6, 3, and Z.pOLnts-resgectlvely than {

the sCores of the people assigned to the jobs «in (Z.l), ¥
At first glance oue might conclude therefore that A4 is .
less qualified than thQ\Riiient work force and shou}d -
not be hired, but this turnsiout to be-a wrono con- N
clusion, for if Ay is ‘assigned to J to.& and 1\ i

~

As to Jy the value of the asg1gnnent is a‘+ 8 +9 5 22

yhiéh is an improvement over the prevlous assignment .

whose value was 21. Thus, it is opt1mal to feplace AZ
by A4 gyen though Az's overall score is well above that '
of A 0nce’aga1n Me.see that Fonnon\seqse doe; not

‘seem to be very hclp{\& in attapk1ng these problens .

0

Exercises . . ) o o
4, Find b;s llstmg all possibilities the optlmal asslgnment f \

the table given by, < - .

, . ° L 1 s ’
)
. * e

v < "
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5. Suppose ay above is increased from 6 to 7. Will the value ‘.
of " the optlmal asslgnment |ncreafe? In general for which
values of a in Exercise 4 will an increase of one unit

produce an |ncrease in the value+«of the optimal assig ent?

6. For whlch a. j-ln Exerclse 4 will a decrease of one unlt

produce a decrease in the value of the optimal asslgnment?

7. If a fourth applicant Ak becomes available with scores
(1, k 0) for the three jobs will it be possible to find
an nmproved ass:gnment in Exerc:se h? If so who will

Ay replace? .

8. Same as Exercise 7 if Ay has scores (4, 3, 1).

'

9. Recall -in the exanple given by (1.4) the optimal assignment
assigned only one person to the job he does best and only
one job to the person who does it best. Show by giving an

example that one can have an n‘x n assignment problem in

which this same thlng océurs

_ =10, &ls it possible to have an optimal assignmént in which no .
’ one Is assigned to the job he does best? If so give an
example. If not g:ve a proof of the impossibility.

- ,.(Thns is a somewhat more dlff:cult exercise. ) o

7

3. Prellmlnarx,TheorX, (Wages and Proflts)

.\

This section 1s-eoncerned with a simple but funda-
mental property of a551gnment problems which will play

. .

the key'role in the theory to follow t L

Two.n X n' matrices A and A' are called equivalent
. if they have the same set of optimal assignments meaning -
that every asslgnment wh1ch is opt1ma1 for one is optimal .

1 ,.“ . . 7
12 |

ERIC | S .

ac

L -’ o
-dﬂﬁﬂﬂﬁﬂ¢/ﬁ .
. P

‘o , 7

o T

. 2

for the other.
from A by adding or subtracting a constant number w; to
every, entry in the ith:row of A. The claim is that the
matrices A,and A;'%re'equivalent. To see th1s‘et a be
any assignment and let v(a) and v'(a) be the value of a
Tnen v'(a)‘

simply changes

for the matrjces A and A' respectively.
so that the effect of addiné Wy
the value of all assignments By the constant amount wi,‘
and it is clear fhat adding such a constant to all
assignments willtg

That is, if oné assignment gives a higher value than
another on A it will also de so on A'.

v(a) N LA

not change their comparative values.

In particular
then, the optimal assignments on A are the same as those
on A'. The same argument applies if a constant Py is-

th

added to all entries in the j We can

column of A,
state this formally as follows:

Theorem 1: If a constant is added to all entries in any

. row or column of an assignment matrim, the new matrizx

obtatned is equtvalent to the original one. - -

Of course one can add constants to any number of
the rows or columns of A-and all the matrices obtained
will be equivalent to A.

-»

The idea of our algoritnm for
solwing the assignment problem is to perform a sequence
of additions (or subtractions) of constants to the rows
of A until we obtain a matrix A' equivalent to A for
which the .optimal assignment is "obvious" in that the
matrix A" w1kl have a column-max a551gnment as described
in Section 1.
matrix given by

To illustrate this consider again thes

°

( . |10 | 8 | 74 .
.1y - 8/| 4 | 3 ‘L
) 9 | 6v| 4| -

.in wh1ch ‘the opt1ma1 a551gnment has been checked
(Henceforth we omit. the row and column head1ngs A
and J? ) “The opt1ma1 a351gnment here is def1n1te1y

<F

Suppose now that A' is the matrix obtained




\ -.'

~

e

ERI

Aruitoxt provided by Eic:

not column-max, but ihe question is whethér one can aEh
or subtract constants to the rows in such a way as to
obtaln an equivalent matrix for which the given assign-
mept is.a column-max. By trying various things one
discovers,that by subtracting 3 frem tow 1 and 1 from

row 3 one gets the matrix .

| SERIOIIG
(3.2) - @] s 3. .
. - ®levs toe .

»

where the entries which are-méximal in their coluﬁhs
have been circled. -Observe that the checked entrfes
in this matrix provide a column-ma£ assignment and -
therefore the optimal assigﬁment is [3, 1, 2], But

by Theorem:l this.matrix is equivalént to the original
one and hence this must also be an optlmal 3551gnment
for the original problem. Hot;ce that we now have a
proof.of the optimality of this assignment which does
not requivre finding the values of the other five

assignments.

Next consider the case of (3.1) with the fourth
applicant with' scores (2, 3, 3). By introducing a
dummy job we get a4 x4 problem whose matrix is given
by-

\
8/ 7
4 3

(3.3) 8
/ 97! 6 | 4
- 2 | 3 |5y

where the optimal assignment [2,
marked.

!

, 1, 3] has been ¥
In order to verify dlrectly that the assign-
meént is optlmal, one would have to calculate the value
of the-other 23 asgignments. Instead.let us again Xry
td,find numbers whicH%yhen subtracted from thé rows '
fiake the given assignment a column-max assignment .-

In trying various things one finds that by subtracting

2 from row 1 we get

¢

- -

, Which yield these maximum_profits.

®& | &

3
4

&
3. bV N

where again maximal entries in each column have been
circled,

and we see for this matrix the given assign-

ment'is a column-max, and sa we have a ﬁroof that the

-

given assigment is indeed optimal. f

. The process'of.subtractiﬂé constants from the
rows of the assignﬁent matrix has an‘intefesting
economic interpretation which will be used in develop-
1ing the later theory. Let us think of the number W)
as the wage paid to applicant Ai' Recall now.that a,
mgy be interpreted as the value to the company, qay
.in dollars, whfn A1 But if the

then the coémpany's

is assigned to Jj'
company_ must pay A, the wage 'w;

profit pj from assigning A to JJ is alJ T Wy In

other wdords, after subtractxng the conqtants Y from

rows of A the entries xn thé new matrix obtained may

be thought of as the prqfxtq thé company’ makes in filling
each of the Jobs It is then. ‘natural for the company
%o, assign each job to the applicant which will give jt
the greatest profit and this corresponds ‘exactly to -a

column-max assignment in this matrix. '

1 . *
We-will now introduce these'ideas into our compu-
tation.

it turns out to be inconvenient to have' to
rewrite the whole asﬁ]gnment matrix, every time .ore
subtracts a constant from the rows. Instead of dox.é
this therefore we will qlmply list the wage ‘constant
v next to the appropulate row of the matrix. In
addition we list at the head of column %.the maximum"

P; of the numbers aj, - w;, that 1s the maximum of the

proflts obtained by assigning Jf to the various appli-

cants. Finally, we circle the positions in the matrix

Using this notation

v
’

10-




- 1 © & -
- - “ ’, oL~ * .
for example (3.1) one would have instead of (3.2) the ) . o :
P L 7. : + Conditions (A), (B), and (C) are called the
. following array called @l display of the problem: . - ... .. .
S : L4 : . ., feasibility condztwng The readetr should check that
. e 3 Profits , ._ they are just another way of saying that Pj. 1s the max-
Q; L« - TNsils ! 4 ] 3 . imum of the’numbers alj'- wy for i =1, 2, ..., N.
3.5) - . 3. 10‘;’ ® @'/ . s An assignment whlch' uses only circled entries of )
. © Wages ¢ |'®©n 4 3 ’ a display i$ called a profit-rax assignment, and the .
& « . ‘ ideas of this section can be summarized in the follow-
1 9 @/ 4 ..
. ¥ . ing theorem: )
R In the same way'mstead 6f rewriting matrix (3.3) Theorem 2: 4 profit-maz assignment is optimal. i
E .
as (3. 4’) we would’wrlte : ~ 3 The proof is just a matter of retracing our steps.
_ ) v ,Profits ' ) A profit maximizing 3551gnment with constants w, and <
. 9.1 6| § 0 v i pj is equivalent to a column-max 3551gnment on the matrix
! - th
£ : obtained by subtracting w_ from the i row of A, but
2 fl10- @ | o : Y 8" = ’ :
- . Yo, from Theorem 1 subtracting’ constants from rows of A .
\ (3'6) B 0 8‘ 4 3 @/ ) . . . .
Wages . ' : does not change the optimal assignment.
< 0 @ @ 4 @ [ . - From now on our objective will be to find the "right"
0 2. 3 Qv ©® ’ - wage constants Wy (and profits p ) so as to get a display
. ’ with a_profit maximizing a551gnmen0. Of course we have -
i . Once a ain these dlsplays are just a kmd of . not proved that the desired constants exist, much less
shorthand ay of saying that if each of the wage have we provided a systematic method,for finding them. For
cofstants are subtracted from ,the correésponding rows VA the present, for small pro.ble}s/the reader should try.by
the column maxima will be the profits listed at the .- experiment and guess work to find the w,'s-which .)'Ofk
head of each column. Jn_view of our present economic  The sections which follow will show h°"’ they can be’ x
1nterpretat10n we w111 refer_to the 3551gnments cor- o found in an efficient manner for. problems of any size.
/ respondingeto the checked entrles in (3 5) and (3.6) i ’ 2 : i
as profit-max assignments rather than column-max . Exercises , N . . ¢
assignments. , ’ .
3 o . . : 11. In Exercise 4 find the constants w; and pJ and give the
- . . N . . AR
~+ . We now give the general definitidn of a display display showing that the assignment you obtanned for that e -
for an n'x n assignmeft problem. It consists of problem is profit maximjzing. . ¢
(1) the original assignment matrix A; (2) 2n constants ; ’
. . . "12.° Set up the problems of Exercise 8 and 9 as 4 x 4 assign-
Wis seoa'Wos Pry o veva P and (3) certain circled o
- . n . n-. . L ment problems. Find constants w. and p and the dnsplay
entries in the matrix-.satisfying the conditions !
- H - with a profit-max solution. =M
(A) w. +p: > a.. for all positions (i, j) ' ' :
i*Pjz 1J P . . > ’ 13.  Show by finding the appropriate w; and P and giving the
+ (B) if wy+ p. = a.. then a.. is circled.
J i) ij display that the checked assignment below is optimal.
(c) there is at least one circle in every
column of A. N 11 .
, ° 1 - .
Q * o
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"in which all numbers have been deleted. This problem can

‘also be interpreted in terms of JObS and appllcants wherg

instead of each applicant hav1ng a test score for- each
job he merely gets a grade of pass or fail: If»A passeg

the test for JJ a circle is entered. in position (1, BDE

and we say that A qualifies for JJ -The problem is then

to assign as many appllcants as’ possxble to jobs for

The Simple Assignwent Problem ich they are qualified. This 1s called,the sim 7e

In order to use &he method of Section 3 to solve : ent problem. (There is a second somewhat more °
the assignment prdblqm it is necessary to be able to picturesque interpretation of this problem in which*

recognize whgn an as 1gnment matrix possesses a column- the rows and columns of the matrix correspond to men
max or profit-max as

.

iignment, The following example .and women rather than jobs and applicants and a c1rcle
‘shows that this may not always Jbe easy. in position (1 J) means that man i and woman j are

U . ’ ecmpatible. The.so called marrzage problem thén asks
7 that we pair off the men and women 1n as many tompatlbl_e
ble.) Lo
9 6 _ . pairs as 20551 .
9

S

is possiHle A Tittle experimentation may convince
6 7 9 « . " the reader that there segems to be no way of f1111ng all

) eaNE L the jobs with qualified applicants. wWhat is needed
. As usual the maximal entries in each column have * ‘i ®

- then is some sort of ""proof"” that in facq there is no
bgen circled, and one must now decide whether it 15 " complete 3551gnment Now it turns out that one can
possible to choose a set of f1ve\c1rc1ed entries so give such a proof for notice that if one con51ders
that~there will be exactly one entry in each row and
column. Note that the question has nothing to do with
thé numbers in the matrix. One could as well consider
the following dxsplay

. . » *
. Returning to (4.2), the question is whether a
complete assignment, i.e., assxgnlng all five applicants,

jobs Jl’ JS’ and J4 there are %hly two applicants
A; and A4 who qualify for them It follows that there
is no way of filling al1 three of these _jobs because

of sthe Shortage of qutalifled appllcants hence a complete
agsignment is impossible.

v
K

The situation which occurs here is typ1ca1 and very
important for what follows. We will say that a simple
assignment problem has a bottleneck if .there is some
set of r jobs for which feWer than T appllcants are

qualified (or in the marrlage problem r women who are
compatible w1th fewer than T men) In the example

°
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above the bottleneck consists of the set {Al, Ay
Jl, I3 J }. . We now state the result which plays the
key role 1n the method for solv1ng assignment problens.

Ma1n Theoren: Every Stﬂpbe asszanment probZem has
1 etther a complet te. asstynment or a bottleneceh (Fur
mot both). :

@

:

) The proof ~of- the theorem will emerge as ‘'we present
" the solution method for the simple’ 3551gnment problem
" which will be 111ustrated By #feans of N
example.

following
".i

We are given below the qualification matr1x
a 10 X 10 srmple assignment problen. ‘

T1 J2 I3 Iy Js Ig I; Jg g g
Ay ) oV’ 0 . 0
A, ‘ (1 0 0! - . )
. Ay 0/ 0 1ol o 0
A4 . 0 0v/ « -0 )
(4.3) A 7| 0 0| . Y 0 ‘4
A6 0 0v 0 0
A, 0 0v/| 0 R
A8 o 0 0 0 0 | =
P .
. Ag 0 . 0 0 .
AIQ ) 0 "0 0 -
' . - <
. The obJeCt1ve is to find e1ther a complete ass1gnment
_oria bottleneck. The procedure for starting out is Very
simple. We run along the list of jobs and assign eatch

to the first ”ava1lab1e” app11cant Thus J is 3551gned
to A2, JZ to AS’ J3 to Al’ J4 to A6 (Note that Ry _Was
also qualified for Iy but is not ava1lab1e 51nce hg has

already been 3551gned*to J2 ) JS to A4 g51nce A2 1s.. }

- n

':) [ . Z K -
o , 20 =

ERIC - ..

. *
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¢ : ’
already” assjigned) Jg. to AS {why qot to A7) J,ato Ay

(why. not to A 7) These dsslgnment\-haxﬂ hEen 1n01cated .

-

by checklng thL appropriate position 1n (4.3). : T

The 51tuat10n changes abruptly when we eeck to

assign Js for we observe that all three ¢ 1ua11f10d
applicants A 6’ and A7 have already been astgﬂea.' ®
This does not mean; however, ﬂhat there 1s ho annIo

{ .
We will see that 10(15 possible to assxonv A

;/17 are rea séé]ned properly. The i 'T‘"'
dding such a reasslgnment if it exists |

'ng method becquse 1t 1nvolves

attachxng nume

ical labels’ to jobs and applicants 1n »
_

the foliowing

»
—

ith the numeral 0 the job to be assigned,

1) Label
. in thi This -is done by writing fhe

label at the bottom of column 8. We will

refer to Jg as the 0-job. " Y

~case JS'

2) " Label with a 1 all applicants who quallfy for
the 0-job Jg» 62 and A .
To do this we look for cireled pqsztzons in 2

1n this case A3,

column 8 and place a 1 at the right end of
‘each row’having a circle in column 8. These *
will be called I-rows and the corresponding

A applicants I-applicants. .

3) Labelnwith Q 1- all jobs tblwhich l-applicants
- have been'assigned. In this case the 1-

applicants Ag, A,, and A, have been assigned®

to Jz, J4, and J7

Accordingly we wrige
a 1 at the bottom of columns 2:

4, and 7.
¢ This is done by searching all .the 1-rows
for checked positions and where we fin{
‘one we enter the label 1 at the bottom of

the corresponding column. The display with
the labels is now N
. " i 16

.
-
-
-

r
[

Ne

»




N . Y o

.o - .- v o
« ’ N .y - . 2. This means, he qualifies for ﬁ)\::/i-job,
’ J,*J J J J J J Jo J . .
¢ . 1 2 3'.J4 5 6 7 8 9 {“1‘3 in this case JZ, 34, and J7, Ass him to
’ ) A 0/ 0 : 0 - ol ) one of these, say J,. Now J, is a-1-job
1 . 4 . which means it was previously assigned to some
- , . Az 0/ .0 0 l-applicant,-.in this case -A.’. We therefore
® A3 0/¢ 0 [ 20 0 ) 0 1 . . "unassign"&l\s firom JZ' Finally .-’\3 being a .
N A . Y - 0 : 1 l1-applicant qualifies for the 0-job Jg so hc Lo
o 4 - 3 ’ »1s assigned to it, This gives the new . /
(4.4) . Ag 0 0 0/ 0. e assignment. The only changes are Ag to ;12
Ag o | e/t L 0 0 |j1 i ‘and Ay to Jg. The néw display is then .
. .
A7 N 0 ) 0/] 0 1]~ ) J1 JZ JS- J4 J5 J6 J7 J8 J9 JIO
= - L)
CORy 0 olo 0 RE ! A, ovf - I o o ,
Ag | O 0o - 0 ' A, | ov]- o 0 Coe <
Ao 0 Lo o - A | o 0 v Lo o] ol
= - 7 . N . 1 Ry
’ % .0 !
- - t 1-|- 1 1 Jt() B ‘ Ay 0y | 0 §
.. labels, RO 0 0/ 0 ¢
. - L . ; . Ag ) 0 4 0 - 10 0 s
4) This is like step (2). Look for all applicants 3 : A . v " . Y
who -qualify for 1-jobs and if they are not already 7 -
. labeled label them 2. In this casé Ay, A,, and Ag -~ 0/ 00 0 : 0.1
A8 qualify for the 1-job J2 but A6 and AZ have i Ag 0 0/ -
already been labeled. However, Ag is not yet - . 5
o . labeled so it gets the -label 2, etc: bThe‘exact\ T Ao R . «
. evmputational procpdur& once .again is to look . . 1,11 ;' . 2 1 0
v for circled positions in the 1l-columns and label £ ) - - . labels .
: the corresponding rows with 2 provided they are i ) ’ .
. not already labeled . - J We now proceed with the assignments noting that J9
qs y ‘e the 1 ; t«' . ) - can be as3igned to Ag- On the other hand Jqp cannot be
L ) € now make the important observation that in > assigned, at least for the present, sincg all qualified )
. labelling A8 we have labeled an applicant who applicants AS’ A6’ ﬁd A8 are already astigned to other
has not been previously assigned. When this jobs.  We proceed with the labeling methtld (refer to . .
happens’ we say that breéakthrough-has occurred 4.5 for the pi
‘ ! . picture). -
and this means that it is now possible to . ; )
v find a reassignment, which includes J8. The . 1), J10 gets the labe%,O" : i
. -method is the following: Ag has been labeled © _2) All applic¢ants qualified for Jip» mamely Ag,
. 2{)\ g . 17 . Ag, and Ag get la‘bel 1. . 18
) z ' ~ ‘ \ - H * '
‘ (S Q - . ,
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circle in this row”and the O-column. This

»

1
¢
{
4
5
&
¥
Jd
7

The JObS a551gned to 1- appllcan{; LAz, A6’ and . )
means that J 1s now assigned. Otherwise

Ag, namely J8‘ Jys and J, get label 1. . k+1 ~ o
2 ; there will be exactly one checked position

All applicants qua11f1ed for 1-jobs J,, J4» in each l-row.' Label the corresponding
and 8 not already labeled get label 2. )
This turns out to be only A

L ]

column 1.

7 ‘Look for all circles in each l-column and labe]
All jobs a551gned to 2-applicants, namely J7 , ! the corresponding row 2 provided it has not al-

get label 2. . ) .l . ready been labeled. If break- through occurs ‘
‘511 applicants qualified for 2<jobs, namely (1.e., a row with no check is labeled) a re-

A3, X7, and A8 and ndt already lgbeled get \ : assignment including Jk+1 is found accorglng to
. label 3. But in tﬁzs case all three applicants \ : the method.,of the examplef If not there is a
are already-labeled, hence no dpplicant gets _ checked position in each 2- row. Label the’
label 3 and the labe11ng procedure terminates. ) corresponding columns 2, and so on.™""
Note also that breakthrough has not* occurred

) »The procedure must terminate in one: of two wdys:
for the only unassigned applicant, 10, has

(A) either breakthrough occurs in which case one can

get a reassignment - 1nc1ud4ng k+1 by the method of the
preceeding example or (B) at some step the labeling.

of ‘the labeled jobs Jogs Jys J7s Jg, and Jyp for terminates because all the new rows which are candidates

which only “the labeled applicants A3, A6’ A7, for a label have already been labeled. 1In thlS case |

and Ag are qualified as one easily verifies the claim is that there must be one more labeled cplumg

directly from the qualification matrix. We than labeled rowsd and the corresponding jobs and applicants

list this bottleneck in the form {Ag, Ag, AL, form a bottleneck’ To sge why this is so note 'that at
A8; Iy Jd’ Ji, J8, Jlo}. It follows that ’

the end of each step there will be one more labeled
there does not exist a complete assignment column than row. This is certainly true at step 0 since
for this matrix, and the problem is 3olved. there is one‘0-column and no O-row. From then on at
"Let us now describe the labeling method in fgeneral each step as long as breakthrough does not occur we lajgel
“without reference to specific examples. We assume that ’ the same number of oolumns as rows, for each t1me we o
the first k jobs have been assigned so that there is a label a new\hgw it musticontain 3 checked, pos1t10n (other- 7
checked posit?on in each of the first k.columns. Then, wise we would have breakthrough) and th1s prov1des a’ o

not been labeled, So we get no reassagnment
Instead hdever, we get a bottleneck conslstlng

.

St 0 Label column k+1 with 0 Call this the new column with the same label. Now w n labellng termi- N
eg C w . b

0 1 nates it means there are no new appllcants qugllfzed for ;,i
-column.

Fex the jobs already labeled, hence there is a shortage of B
Step 1 Look for all circles in-thet 0-column and one qualified applicant £or the labeled jobs. " This “then

label the corresponding rows l-rows. If provides the proof of the Main. Theorem as well .ds a = =~

one of these rows contains no check-then method for solv1ng the simple . a551gnment problem‘~
breakthrough has occurred. Check the °* . - . .

.
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Exercises . RS ! ,
1h.  For each of the following qualification matrices find etther °

\

Q
{ERIC

x5

a complete assignment or a bottleneck.

list a set of r+1 jobs- for which there are only r qualified

applnc%hts. : >
‘ .
. s
o] J0[0 o] 10 0] JoJojo]®
0] {o0lo0] [0 0] 10 "0 ol |
0f jolo0 8] |0 0 10
1ol [ 1o 0l 0 0/0]/0]0
0jolo| |olo 0 0 ol |-
o[ [0 0 0 0lolo 1o
(i HE Giv)

\@a reproduce below the final display for the example of this

-

R oY 0 0

2 | o/ 0 0

3 o o 0] o/ 0

4 0 ‘Io/ 0 1

510}, o/ 0 .

6. »0 o/ : 0 0 e

70 0o o/ !
8 o/ 010 0 - o |

9 M 0 o/ |
10§ 0 j o | Pl 0

A
- " labels ' :

section. The necessary labeling can be done rlght on this

paper without having to recopy the dnsplay. Simply write in
with pe;cil the necessary checks ‘and labels and then  erase
them before going on to the next part of the problem.

1 2. 3 4 5 6 7 8 g 19

. .

? !

Can the above assignment be extended to a complete assugnment
jf an additional clrcTe is introduced (i} in position (1,1),

o, Gi)in pos&}Jon“(l 2), (iii) in position 2,7)7 1n each case

either give thé assignment of” list the bottleneck.

N . -2

- SV =

L
«

To specify a bottleneck

o ‘ / -

18. tn the problem of Exercise 15 there is a bottleneck

.

16.  Fill in the labels ‘from (4.5) in the display of the previous

problem. Use the information they provide about bottlenécks

to prove that if circles are added in any or all positions

of row 3 Tt will still not be possible to make'a complete

assignment. Prove the same statement about column 1. Is
A .

the statement true of any other rows and columns? Which?

17. Give a brief ardument proving the statement ''but not botb”

of the Main Theorem,
{A 3, 6’ 7» 3. Iy Jh' 7¢ J8 JIO} meaning that there
*Show
that there is also a job-bottleneck by showing that A

are too few applicants for the given set of jobs.

A2, Aq} AS’ g and. AIO are qualified only for J 31 5,
6’ and J9 so thag there are too few jobs for the given
set of applicants. Show that this will always be true,
i.e.& that if a‘problem o?s,an'agplicant—bottleneck it
must 'also have a job-bottieneck. For each case in Exercise

15 where you ?ound an applicant-bottleneck find a job-

bottleneck.

5. The Optimal Assigﬁhent Algorithm

The method for solving the optimal assignment problem
is mow a matter of putting together the material of the
two previous sectionS. We wish to find wages w; and
proflts p for a given aSSJgnment matrix so that 1&by111
have a profit maximizing" a551gnment which by Theorem 2
wild then be optimal. We will find the desired constants
by solving a sequence of simple assignment problems.

We preceed at once to ilThstrate the method using the )
third example of Section 1. The idea is to start out
with.any set of wages Wy and gradually change them ungél

we get a profit-max assignment. A convenient starting

point is §0”éet.all wages w; equal to zero. For the
example, the initial d;%play is then
22
® -
. Q@ .
’ \
27




AW

- Y -3
profits
\ ’ 1) 8|7
© ¢ 0 8
- EEo,
(5.1) vwages 0 8 4 3 °
0 o 6 4 .

The procedure is now to ignore the numbers and try
to solve the simple’assignmept problem given by the
circles in the above ,display. 1In thlS case, of course,

“the problem has no complete assignment since there are

~

The bottleneck in this case

no circles in rows 2 and 3.
is obvious in that there is only one applicant Ay who
qualifies for the three jobs. Thus; there is a. severe
shortage of qualified labor of, in economid terms, the
qemand for quarﬁfied applicants is 3 since there are
three job openings, whereas the supply of qualified
applicants is only 1 since A, is the only qualified -
applicant. We now invoke the fundaméntal law of
economics, the femous law of supply andydemand, which
dsserts-tﬁat if the demand for some gooé exceeds its .

supply then its price will rise (and conversely if the
. supply exceeds the demand the price w111 fall). For

our case this means that the wage w, of A1 must rise.

Suppose then Wy is 1ncreaseg to 1. The hew displayo

s then -
‘ .
; 9 (7 ' \
(52) 1 @@@
; 0 8 ? 3
—:‘ ERNE OIS -

Notice that increasing L2 byfl decreases P1» Py and
P3 by 1 and- introduces a new circle in position (3,1).
We can describe the operation just performed by the

! following: :353 . 23
. . . . - -

o | ‘ . s

ERIC o

Aruntoxt provided by Eric .. .

Rule. If the simple assignment problem' has a
Jdottleneck,~ increase the wages Wy of all A in
thé bottleneck, (which will decrease the profits
6f all JObS JJ 1n the bottieneck) by an amo%nb
such that at ieast one new circle appears in the

display. -

Let u; continue applying the rule. The display
(S 2) agaln has no complete’ 3551gnment and 1t has the
obvious bottleneck.{Al, AS’ Jl’ JZ, J3} since there 1s
no circle in row 2. ‘%Fcording to the rule, therefore
we  shbuld increase Wy and Wa and decrease Py» Py and

Ps by 1 for when we do this a new circle appears in

‘position (2,1). ” o

-

. ) 81615 .
wole
(5.3) . o 413 labels
1 @ 6 |-4
1]o0
. labels

©. .
In the display we now go through the labeling
process to locate ‘the bottleneck {Al; Jps J3} so
according to our rule we again increase the wage w

1
and lower p, and Ps3 by 1 giving

24
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. Notice that\;here is a new circle in position (3,2)
and also the old circle in position (1,1) has dlsappeared
The checked positions now give the solution of the.51mple
assignment problem (obtained by the labeling -or any other
method) and this, by our construction, is a profit-max
hence an optimalpassignment.

In this proEedure the greatest chance for error is
failing to fill the circles coreicedy. The reader shogfa
take Special care after each appllcatlon of the rule,

{A) to look for possible new circles which can
occur only in positions (i,j) where J is

in the bottleneck and A is not;

(B) to look for possible dzsappearzng.circles
. which can eccur only in positions (i,j)

where Ai is in the hottleneck and Jj is
not.
Remember that aij is circled precisely when aij =W, *p

The appearance and disappearance of the circles

has a natural economic meaning. A hew circle appeared

An p051t1oﬁ (3, 2) above because it has now become. .

- job J4. We have

profit maximizing to hire Ay for J
1ncreased wage of A

in view of the
On the other "hand gthe cirtle
in p051t10n (1, 1) dlsappears because it is no longer
profit- maxlmlzlng to hire A, for J
increased wage.

in view -of A1

I'd
Let us now continue with the example, introducing

the applicant A, with scores (2, 3, 5), and a dummy

« T e 8 15|47
R ei,:‘ﬁ" 10[® @_o - - -
(S.'S)Y . 0 I@®] 4| 3]0
. . 1I®|6®] 4|0 .
2|3 {s|ol.

+ ERIC,

s N i . e

[ - ] =
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One. could, of course, start over again with this &

4 x4 problem. However,
of the work dlready done on the 3 x 3 problem provided
one can choose suitable values for W, and p,. A good
rule is to choose these numbers as small as possible
compatible with the feas:b111ty conditions w; +p.>a
This means that Wy = 1, for w, < 1 would V1olate

% * Py 2 243> and\p4 = 0.
p051t10ns (2 4) and (‘ »3).

This produces circles in

profits
: J 815140 . .
5.1 ® O] of s
BN KOV ST )) B
(5.6) wages . labels
. 1I®I®]4 |02
1321310 4 )
1 2 3 1'0
’ e labels P

We proceed ,t0o solve the new 51mp1e assignment problem

by the labeling method which this time leads to break-
through when- A4 is labeled, and we get the optimal
3551gnment (2, 4, 1, 3].
the details.)

-

The{béohlem has now been solved. There is however
one last important step which provides an independent
check on the correctness of the solution.
the- value of the assignment which is,

(5.7) 8/ + 0/ + 9/ .+ 5/.5 22,

Then ‘compute the sum of all wages and prof1ts which is

—.,/;/371/ B+0+1+1)+ (8+ 5 74+ 0) =22, . .

The reason that these.two numbers’ are equal is clear
‘because one only assigns on circled entries, that is,
on entries for which a1J =Wt P; and since each of

, ' ‘\

it is possible to take advantage

ij-

(The reader should work through

First calculate

/.




the numbers.i and j occur exactly once in a complete
3551gnment it follows that fhe sum of the checked a;.
is the _same as the sum of the w; and p Finally, if
there 1s any doubt about the correctness~of the answer
we should be sure that all the fe351b111ty conditions

ij S Wt P; ar% Satisfied. .

*‘As a final illustratian we go through another
slightly larger example. * The assignmeat matrix is

Profits-~

10

9

g

VO]

6 |2

7

ot L

" and we.ﬁave taken initial wages to be 0 giving the
displax as shown.

The d1splay has the obvious bottleneck {Al, A
s\J Iz
in rows 2 and 4 Applying the rule we can raise Wi,

Wg, and W by 2 and lower all profits by 2 produc1ng\
a new C1rc1e in position (2,5). .

3’
39 J4, J } since there are no circles

v s

Profits

8, 9

9 8

N 5
D)
5

ER

Aruitoxt provided by Eic:
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Al

4

(The student in making these calculations should
definitely not recopy the assignment matrix at each
stage. He should always work with the original matrix
changing only the Wy dhd °3 and adding or erasing circles
in going from one stage to the next.) The new display
shown abovg again has’ the obvious bottlenock {Al, A2, Az,
AS; Jl’ JZ’ 3 Jd’ J } (since there are no circles in
Tow 4). RalSlng Wi wz, Wy, We by 4.and lowerjng all pj
by 4 brings in circles in position {4,3) and ,5) as
shown - .
profits

.

4 5
1O + |0
6 6 5
/ g
© OO
21 @] 3
7 1A | o
f, one starts the labellng procedure the bottleneck
{A3, 3%% JZ’ J } becomes appdrent at once. *Increasing w3

by 1 ‘and decreas1ng pl, Pys and Py by 1

f(A) produces, new ‘circles at p0$1t10ns (1,13, (1,2)
[ and (4,1) , )
I (B) removes circles at (3,3), and (3,5) giving

profits -

o4

@

)

labels
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fayd‘é number»of stepg\xﬁbolvzng

turned out that after

V’/ - -

,N%iifrﬁ!n;é@_&wulé

\ \ changing’ wages it 15 clear that Jat’zeach stage ney .
’ circles will appear in the. ﬂxsplay, Buxeunﬁortunatei
it may alsp happen thﬁt'01d~cmrcles.mgyféfkaypear. o1
: . is theref:?\\Qt least t@nc¢1Va&ie tha;-c1rcles ke6§4<%5
o ‘appearlng aiv dlsappearlng 1n such “a -way- that there are
never enough\of them to ‘make- a.complete asslgnmént and
S0 the algormthm will go on forever. . To show’ that

cannot occur we use a dlfferent approach. - Inste

. " 4
At *tach stage of the talculation let

\ z =W + kP ool # L +*p1 + Pp * ... ¥ P

Now 4t every stage of the calculation if a, complete

as%ignment is not f9und we get a bottleneck which leads

us to raise r of the-wages Wy by some amount and lower

at least r+l1 of the profits by this same amount. This

, means that the number k- will strictly decrease by" at,

least 1 from oné stage to the next. On the other hand, T
T by the;feagiblIity condition the value ‘of z can néver

be smaller than, for examplq a

+ + a

1 4 ay, e n because

nn
since z decreases every time the display contains a

bottleneck it follows that eventually we must get a

. 29
Q. 2: ‘ £ 4 :
EMC / IR 3 --

Aruitoxt provided by Eic: .

,.i /-drsplay wzth no bottleneck and hence by The Maxn

——— - L ey by - .
R T . PR -
e - Ve ¢ * S - . - - -l
Exarclses" - BT . .
',_».MOTE- 'ln all problems where you are asked to solve a numer:cal - T .

[ 3 probl

1ncre351pg varlous wagﬁs we:arnxvéd at %-ComplétEanSJgn"’

e -+ ment. for the cartegpogdlng.slmple a$s§gnmen§ prﬁ_]gm Peal

. trying to keep track of c1rcles we mak® use of the R
£e351b111ty condition . A_" K
.. Wy * pj > aij for all positive (i,3).

Wy * Py 2ag, Wyt pz 285550005 W+ P> a . But Qs

The@rem a dlsplay w1th a. complete 3551gnment

ad r solutmn 5houLd presgnt the fmal dnsplay wrth ST 7

- tﬁe w—r’ p’. and £hecked and curcle& entries of the matruc,.., DL e

In acfually makmg’ the caLculata.ons the student should work

~‘wn th peuc:l -gnd .eraser on, Lthese sheet.; recopymg only the L -
-

fmal dlsplay to, hand in. -;
19. ,F ind the optlmaL assignment fof the matrlx

- - .
e -7z < @

Y Lt \ 5

S - 615(2 L .
. i 4l2fofo] *
s - 221 \ ‘
3 ,.: o 403f1]0]-- ) )
. -

. ot

20.. GBelow.is the final display for the example of Section 5.

Igsert the suitable circles and checks in pencil without

referring back to Section 5.

“© ¥

»
-

611.710911 N

e . T

-

) Now a sixth applicant becomes available with <cores (5, 2

- " 5, b, 6). Add this and a dummy job (in pencil) in the
display above and.find the new optimal assignment. (Do
) your calculations on this sheet recopyiﬁg only your final -
' . display.) .
21.  Same as Exercise 20 except the scures of the new appl’ican-t
- are (b, 3, 5,.5,- 4). ' ’ .7

. . - * .
& I B N
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L - - N ) 7' Ans ‘ & i? i / o o
22.\ Referring to the display of Exercise 20 prove without - ' — nswers #o_Lxercises
making any calculations that if any of a'l_l' uncirc\lm ) Section 1

en?s are increased by 1 the chegked assignment will
remain optimal. Show that this is also true if any checked

1. n! - - ) _

. _ entry is increased by any amount. ¥ i 2. [V 2 3 4 has value 26. ; '
) ‘ ‘{4 3 2 1] has value 28. -
23. Referring to the same disptay increase the entry in pf)sition' i (3 1 2 4 has va‘lue 27.
{1,1) from 12 to 13. Which numbers W; of Py must be changed : 2 3.4 1) has value 27. ‘
‘ to m8intain feasibility? Afte{ making the change which new .
circles appear? Which old ones disappear? FEind the optimum ) 3. The‘chegked assignment is [4 1 3 2] with value 27. The
for this 4ltered problem. circled eptries do not constitute an assignment, since there

are two circled entries in row 3 (and no circled entries in
24,  Same as Exercise 23 except that : .

. \ : row 2).
) . (i) -the 9 .ln position (1,2) is decreased to 8 Section 2 . ) .
.o t 6 . .o . . N N .
(i) he in position (2,2) is increased to 8 . k, The 3! = 6 possible assignments, and their values are:
In each case do not start the problem all over from the
bealnning but adi he i . . (v 2 3) y¥=9 )
eginning but adjust the given W, and pJ. so as_ to restore 3 23 v= 8
. . . f . . B -
feasibility and go on from tl.u:are 2 1 3] v o= 10
25. Solve the optimal assignment problem whose matrix is given . 2 3 11 v = 5 e
below. Time yourself! 3 1 2 v= 8 . y -
. ‘ 321 v= 6 (
7 6 9 8 5 5 9 6- . Therefore {2 1 3] is optimal.
. 8 8 8 8 6 7 9 7 5. Even if ayy is increased by 1, the optimal value will not
s h . s ; s | 7 h . increase (although there will some new optimal assignments).
. . The value of the optimal assignment will increase if a9 35¢s
9 8 10 7 7 6 9 6 or ag, is increased. !

) ; i . 4
| 10 ‘9 101 9 7 8 1 10 ~8 6. Likewise, a decrease in 3130 3y» OF agg willl Ie%g?to a decreased
- 5 I 5 6 A 5 6 5 - . value of the optimal assignment.

( i 7 7 8 8 5 7 8 6 ) 7. ‘Yes. Replace A2 with Ah' The new matrix is:
' wlolw|lz|8]s|7]9] . . I T ’ :
‘ ) - | NI NS
26. An additional applicant with scores (1, 2, 3, 4, 5, 4, 3, 2_) . ]. @ o
. Becomes available. Starting from your solution to Exercise 2 . ,
25 obtain the new optimal asslgnmen‘t, ] . A3 2. 2- @ 3
o ) ’ . 31 and the a.ssignment [t 2 3] has value li.
- . . YRV . . 3
1 ) ‘ . b 32 - .
N . . ' » oo i ! 37 . ' P4 *
"?:TEMC .. N - . . \ B .
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8. In this Case, no improved assignment is possible. 1221 pJ. p. -
’ . * - J
’ 9. Choose r- 2(n-1). Form the following matri%: i > 4 : 0 i I'J 3 I 0
. . /| v
A 00 2 [©]] 2]
-1 -2 en ofls i 2{0]( o @1 2] 0|©
- : o 2 = 0@ 2B/
r-n+ r-n - .
» r-2n+2=0 /
M 0 1 0 0 0
T | 1 o @00
: For example, n = 3, r = 4, ang the matrix is 4 3 v
302 0 B30 —e -
2 1 o0 w 61615
. Or, for n = S, r= S'and we get 7 6 o 5 2 @ @ 7
* -
. 7.605 4 3 ! 1O D@ 5 ‘ -
e s ‘
. \ 5' 4 3 2 | Y @/ 6 5
Ct 5 & 3 2 .
473 21 of. o {@D'|® 5 | &
’ L] - -
In general, we hdve a matrix in which each ap| plicant is best '
i . Section 4 - .
« qualified for job 1 and each job is done best by appllcant 1. . 1 D . .
. Since in any assugnment includlng the optimal assignment, O Th, (i) There is a bottleneck {AZ' AS; JI, J3, J6}' ’
- . -
= exactly one person does job 1 and appiicant It does only one ‘- (ii) There is an assignment {6, 3, 5,1, 4, 2}.
Job, we se€ that only one person does the job for whi'ch he is N ' (iii) There is a bottleneck {AI’ Alq' A6; Ji' J3' 3.110' J6}'
o most quallffed and only one job is done b? the most qualifled Yo « 15. (i) No. There is still the bottleneck {A A7,‘ A8;' Jz,
* app”cants . ! J J. ). ’
. : . . . LAY R AR T .
- 10. This 1s Ingssible. ! /. . (ii) Yes. An assignment now is {2, 1,8,5,6,4 7,10, 9, 3}.
L Section 3 . (iii) Yes. One assignment is {6, 7, 10, 5, 1, &, 8, 2, 9, 3}.
R \ .
“n ! . ’ b Another pOSSlbIIltY is {6, 7,85, 1,4, 2,10,9, 3}.
| w K ¥io3 1 e
V- 2. - o 16. Ve have _the bottleneck {A 7, Agi J 7, Ig» J 10} -
) 29 ©/ 2 L <t ’ . This means that_ ‘the only quallfled applscants« for jobs 2, 10 7,
1 L -
' S 0_'"@/ 2 | o - _» - ‘ ' . . © 8, and 10 are applicants 3, 6, 7, and 8. This will stzll be
. L : , . true even if applicant 3 becomes qualified for other jobs
— ‘ 0 " 2 "2 LU . ' (i.e. - put 0's in row 3) so th‘ere will be a.bottleneck and
-‘ '. . - ' . . .no assjgnment. Likewise, even if other. appllcants become qual-
' :\ ’ . / ¢ _‘ ified for job 1 (i.e. - put 0's in colum 1) the bottleneck
- e ~ é - : will remain. Aaditional 0's may, be placed in rows 3, 6, 7 or 8
. . - and in colums 1, 3, 5, 6 or 9, and the bottleneck will remain.
’ ° Oﬁ O : ' *
o J 33 34°
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. In general, 0's may be placed ‘in labeled row.s.or uniabeled
colums without affecting the bottleneck. <

17. When breakthrough occurs, there are at least as many Vabeled
rows as labeled columns. When a bottleneck occurs:' there is
one more labeled column than iabeled rows. Hence, both break-

8
through and a bottleneck cannot occur simultanebusly.

13. One can simply verify from the matrix the existence of the .fob .

M'“bc),ttleneck described. !n general, suppose there is an appli-
c':an‘t bottleneck'whf:re the only qualified applicanit’s for some
set of jobs J are‘ the set, :Of applicants/ A, where :l has one more
element than'A. Then tonsider the sets J and A, the comple-"
ments o‘F J and A. Since the total number of applncants |s
equal to t’he.J;otal number of jobs, we have that A has one more
eIemant than J. "Moreover, the only jobs for which an appli-
cant in A is qualified are in ¥ (for if‘tﬁe applicant were

.qualified for a job in J, he would be in.A).

{A; 7} form a job - bottleneck. Note we could also prove the

existencg of a job - bottleneck by applying oyr algorithms to
the tranhsed matrix. In # 1 i) and iii) we have.the follow-

&'n‘nggob batt Ienecks :

Thus, the sets

i) A, Ay Ae’ 2 Iy Jgh e
i) {A2 A, A5 J2, Jj}.

.. e . ) .
Section 6 ) ‘ ;
I9. 8 13 {1 Jol - ‘e

2 @@ ]2 |0 'v=10

o [® | %] o |@ ; ‘ X
; 0otz 2 Z @ @ ¢ / s

o |[®|10O|O® Lo o
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22. By the feasibility condi:i’ons: wi'+ . 2a,. and if aij is not
circled, then w.‘*+ p..> aij' Hence, if 1 is added to an un-
circled entry in® po!:tuon (i, j), we have w, + pj > 'J + 1
and thus the feasibility condltuons:are still satlsfued for
these W, and pj.. Hence, the original checked assignment is
still optimal. ’ : . - .
Suppose the checked entry in row i is raised by an amount, \
di > 0. Define w.* = W, +'di. Since we hall‘dm\«:i +p.> a;. then
certamly w.~ + pj ia Moreovers if entry (i, ji wasicheck=
ed and had d added to it, then w,i* + p,j = aij b d fhat is,
U’f and p satisfy the feasibility conditions, and the
.orhginal checked ehtrles wull be circled. Since they form an
assignment, it is the optumal assignment. .
* . J N .
'—: ’ \ 36
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23. Suppose a;. Is changed from 12 to 13. We could change w; f rom
6 to 7 (and this would eliminate circlés in the (1, 2) (v,3)
and (1, 5) positions) of we could change Py from 6 to 7 (which
would eliminate circles in the (3, 1) and {4, 1) positions).
The original solution is found to still be optimal, but ‘there

are alternate optimal solutions now as well,
. L

2o i f 62 | w3 s
6 1| ® FRNQ) el
418 @16 |50
813 |@|10|@ u - .
° |® |0 |®]0|06 \ o
|7 | @6 0
R NI B R A ,
A CHERIIONIERT v =g :
s s @] 6 | s ©)
- 740 | 10] 10 @/ n ,
- o 1©1:1®]5]0
6§ | 7 sl @f .
25. 61 617 |6| sfls]7]s
217 6 @O s s[@]s vee2
2[®10]: 0] 0|0[od
ofs | 46| s 3|l
‘ 3113 |@| 7@ 6] 5| v
3o |O|®IO| 0 .
ols | 415 ]|®O| @G| 6|0
271718 |®1 s|@f sl s n
@) 9|0 7 @ 710 ‘
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” Return ‘to:
STUDENT FORM 1 EDC/UMAP

“ > ¢ 55 Chapel St.
/1\“ gequest for Help ) Newton, MA 02160

i
(9

[} ~

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name : ) Unit No.
Page !
- Model Exam s
o S ti
O Upper OR ection__ OR Problem No. \
(juiddlé - Paragraph R Text .
CD\kgger ) . . ] Yroblem No._ ~

fpescripffbn~of Difficulty: (Please be specific)

A

e

Yoz

Instructor:. Please indicate your resolution of the difficulty in thfs' box.

8

(::) Corrected ermprs in materials. List corrections here:

”» B
&

%\

(::) Gave student better exblanation, example, or procedure than in-unit.
Give brief outline of your’addition here:

-

(::) Assisted student in acquiring general learning and pﬁoblem-solving
skills (not: using ,examples from this unit. )

1 Y

) ; Instructor's Signature ‘
- . “ o

Please use reverse 1if necéssaryf

P




Return to:
STUDENT FORM 2 EDC/UMAP
55 Chapel St,.

Unii?Questionnaire Newtori, MA 02160

*

Name . Unit No. Date
Institution * Course No.

Check the choice for each question that comes. closest to your personal opinion.

1. How useful was the amount of detéil in the unit?

Not enough detail fo understand the unit
Unit would’have been clearer with more detail
Appropriate amount of detail
) Unit was occasionally too detailed, but this was not distracting
Too much detail; I was dften distracted [

15

\

~ How helpful were the problem answers?

. Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given. to solve the pro?lems
Sample solutions were tod detailed; I didn't need-them

Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little Not at all
How long was this uhit in comparison to the amount of time.you genefélly spend on
a lesson (lecture and homework assignment) in a typical math or science course?

Much Somewhat About ' ’ Sgﬁewhat "Much °*
" Longer Longer ) the Same Shorter Shorter

Were any of the following parts of the unit confusing‘or disfracting? (Check
as many‘as apply.) . ‘

Prerequisites ° -~

[ __Statement of skills and concepts (objectives)
-Paragraph headings

? . » Examples

e m—

Special Assistance Supplement (if present) »
Other, please explain ' -

) L 3
6. Were any-of the following parts of the unit particularly helpful? (Check as many
*  as apply.) .
Prerequisites .
Statement of skills and concepts (objectives)

\
Examples'

Problems .

Paragraph headings . \

Table of Contents ’

Special Assistance Supplement (if present)

g Other, pleasg explain -

Please describé anything in tﬁe unit that'you did not particularly 1like.

Cr
.
] . : ' ! i .
., H
- N . . -
- .

Please describe anything that you fduﬁd particularly helpful. (Pleaseée use the bagk of
.this sheet 1f you need ‘more space.)

.

“
-
4%,

'
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= DIFFERENCE EQUATIONS WITH APPLICATIONS

A

. 1. INTRODUCTION -
- : - .
« The main theme of difference equations is that of

recursion: computations perform in a recurrent or
repeated manner. In fact, diff rence equations are some-
times reﬁerred to as recursion r lat1ons We begin by ~
lookipg at a familiar sequence from the viewpoint of "
recursion. i

The sequence of pumbers {1,2,22,23,,,.,2n

.} is

a geometric progression gith geometric ratio 2. Each

term in this sequence, with the exception of the initial
term, is obtained- from its Predecessor by multiplying the
predecessor by the number 2. If we introduce the notation
X, = 2" for n = 0,1,2,..., then Xp,p and x are related

" by the equation .

(1.1) . X 2x 1w

n+l =

This.relation by 1tself does not uniquely determlne the .
sequenceiunder con51derat10n because it does nat provide
any information about the value of the initial term Xg-
“However, once the value ) - '

(1.2} Xg =1 -

is specified, then the geometric progression isabompletely
determined because there is a starting point (1.2) and a
rule (1.1) for calculating each term from the preceding
term. That is, beglnnlng with x =1, we get Xy = 2x0 = 2,
then X, = = Z then Xz = 2x2 = 23 and so-on.

Viewed in this manner, the above sequeqnce 1is-=said to
be determined recursively because the ¢alculation of a
particular term is done by a chain of calculations with
successive terms linked br (1.1). The relation (1.1) is
called a difference equation or a recursion relation. The
1

h ) \‘l K ,)' ', . ,
. (Y | ks .
) E MC vl » N i %’ -

B
A et providea by ric . R
. . - -

,‘Thus the n

condition (1.2) is called ‘ah initial condition or boundary

‘condition. By a solution to a difference equation is

ormula for‘xn such that X,.may:be computed

In the above example, we started with.a given_ .
equence and then described it in the form of a difference
equation and initial cond1t10n In what follows, we shall
be concerned with the opposite problem «That is, we shall
be confronted with a difference equatlon and wish to solve
it in the sense of finding a formula that yields the nth
term directly,. gjhe following famous sequence of numbers ;
first introduced in the year T202 by the Italian mathe- )

matician known as Fibonacci illustrates this problem.
" S
The sequence.of Fibonacei numbers is defined

recursively as follows. The first two Fibonacci numbers
ave )

(1.3) ° x, =1, x, = 1,

and the remaining numbers are prescribed by the equatiom

(1.4) X = X + X

. Tne2 T Xpe1 P X 0= 0,1,2,

th Fibonacci number for n > 2 is obtained by

adding the two preceding Fibonacci numbers. The first ten \
-Fibonacci numbers are therefore-1, .1, 2, 3, §, 8,13, 21,

34, 55. The formula that‘gives the nth term directly»is ) ;
by n& means obvious. The solution will be derived iater

afteﬂ some techniques for solving difference equations

have been developed.

The difference equatlon (1.1) for the geometric "
progre5510n is a first order equatzon sincg only, one term N
1s needed to obtain the next term. The dlikerence equation
(1 .4) for the Fibonacc1 numbers is a second order equation
sifice two terms are needed to calculate the next term. )
Both of these equations are linear since the terms of -the

sequences are not multiplied together or raised to powers.

St
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A general linear difference equation of 9rdef r
would have the form

(1.5)

c.X + Cc,X + ...
0" n+r 1"n+r-1 rn n

where the values fn are given along with the coefficients

co,cl,...,cr._ However, in the follpwing»dlscussion we

shall restric¢ our attention to linear difference equations
of first and #econd order. Examples illustratrng how
difference eqrations arise in apptications will also be

given™ '

: AY

e J
o

A
Exerdises
&

1. For each of the following sequences, find a difference equa&ion
and injtial condition that uﬁiquely determines the given

sequence.
|

a.  3,6,9,12,15,...,3n, ...

4

b.  3,9,27,81,...,3", ...

. 2,5,9,17,...,2™1, ..
2. -~ Suppose Xy = 1 and X4 = 2xn+l for n = I,Z,i... Find the

- values of xl’x25f"’xlo'

3. Syppose an initial population of 6 wombats triples'each 2 N

years. Find the population at the end of 14 years: @
4, Suppose the recursion relation xn+2 = xn+l + xn has initial y

conditions Xy = 7’-xl = -4, Find the first ten terms.

Dy * . .

%@ 2. FIRST ORDER DIFFERENCE EQUATIONS
3 v In this section we examine difference equations of
the form. .
Br €o*n+1 7 Clx/,n = £

O

ERIC

Aruitoxt provided by Eic:

where €p»C; are nonzero constants and {fn} is given. By

dividing by ) and changing a sign, wi/i§n rewrite this
. 3

- 52

1 4

v s

difference equation as

(2.1 * «x

“n+l T bxn B gn

-«

where b = -c,/c, and gy = fn/co, We are 1nteres%{d in
&
finding all solutions of (2.1) and in examining the role

of initial conditions for these difference equations.

The associated homogeneous difference equation 1s

-+
(2.2) Xpep ” bxn = 0.

Ihat is, g, = 0 for all n. 1If & # 0 for some values of
n then Equation (2.1) is called nonhomogeneous.
(2.1) .and (2.2) are closely related.

trate on the homogeneogs case (2.2).
"

Equations
We first'®concen-

2.1 Homogeneous Equations

-

The homogeneous equation (2.2), which can be written
)
Xpe1 = bxn, is easy to solve. Starting with the equation
corresponding to n =:0, we have

X, = bxo.

-Next, X, is obtained by substituting this expression for

xl into the equation for n = 1. That is’,

2
X, = bx1 = b(bxo) = b Xg-

Moving to the equation for n = 2, we get
. 2 . .
. xg = bx, = b(b’xp) .= bix,
5 .

Continuing in this manner;, we find

(2.3) n=20,1,2,..

[ n
,;XU b XO,

This conclusion can be formally established by mathematical
induction if degired.

[

If we set Xg = C, 'then Qq have found that any solution-
of the linear homogeneous difference equation

(2.4) X

»

- pxn =0

n+1 S 4

NG
Qo
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has the form ’ (2.6} X, = (1+r)nP.‘ .
) . - o ' ’
. (2.3) X, = cb", n = 0,1,2,.... ) . For example, if 200 dollars, is put into an account bearing

L )_ 5 percent interest, then at the end of 10 years there will
This is referred to as the general solutidn of the be .
. N e . L
difference equation. Note that a solutian is not uniquely ‘ it .
’ 3 s speci £i x;0 = (1.05)10200 = 3%5.78
determined unless a value of C = X is-specified. - 210 - 2
. R f\ ,‘
e For e}ample, the general Solutlon of the homogeneous dollars in the accouﬁ%,{ s ;o
dlfference equation x “5x & is x_ = C5™ where ’ ' . ’ . 'i
q n+l v N 9 . n In many accounts, compounding is doﬁe several times
C = Xg- . 1f the condition Xg = 2 is imposed, then we have - . .
. n . . ~<, per year. Suppose ‘an account is advertised as having an
the solution x_ = 25", On the other hand, if we are L9, . : .
n - . 3 . annual interest rate r. compounded monthly. This means
told that Xy = 750, then 750 £ C- 57 = 125C gives us
ot . . .n ) that there are 12 idterest. periods durlng the year and
C =6 so that the solution x_ = 6-5 results.
- = Fy n i compounding is done edch interest perlod al an interest
Example 2.1 (Compound interest). If an-initial amount of rate r/12. The corresponding difference equation has the
mey P (for principal) is put into an account that bears same form, but noy n refers to the number of interest -
6 percent interest per year, them.at the end of one year periods and the rate of interest is r/13 instead of r.
the total amount in the account 'is P + 0.06P = 1.06P. . ]
. . . ) . For example, suppose D = 200 dollars is put into an
If interest is.:compounded annually, then this new amount A . . .
- . ' ‘ account with interest r = 0.05 compounded monthly Then
accrues interest during the second year.  Thus, at the . .
. ] . . the monthly interest rate is r/12 = 0.00417 and at the
end of the second year the total amount in the account is ,
) . 2 end of 10 years there will have been 120 1nterest perlods
1.06P + (0.06)Y.06P = (1.06)°P, and so on.
) Thus, the account will contain
The compoundlng gives rise to a difference equation 120
as follow%ﬁy Let X, denote the amount .in the account at - X207 ° 1. 90417 200 ) .
the end of the ntM year. The relation between X. and . o e
. Y .- . ,be " n+l = 329.53, ‘
x, 1s then ' ‘ v ~ <
- Ty : - dollars after 10 Yyears. ’
X = x_+ (0.06)x_ = 1.06x . N .
n+l n n n ‘. . |
) Example 2 2 (Population growth). 1In a population of -
That is, the new amount 15 the old amount X, . plus the anlmars, insects, bacteria, and, so on, that has no dlS' -

interest 0. 06X on that ‘amount.. I" this 51tuat10n, Xg =P turbances to retard population growth, it is reasonable

is the initial amount 1n thgﬂgccoﬁnt This difference
n#le bgn = 0 with b = 1.06.

Therefore, the amount in’ the account at the end of the
th - ¢ : . . . .
n" year is * ) . the population rate. Stating this hypothesis precisely

(1.06)"p. 7
. . - . size of the populatlon during a‘'sequence of equal time
" For a general rate of interest r, the amount is periods;-this may be years, month3, or minytes depending
Y ) i A 5 - on the nature of the population. Now let x  be thl® '
- .

to assume that the rate at which the population grows
equation has the form x depends only on -the size of the population at any time,

That is, the.number cagable of reﬁroduction determiﬁes

“leads to a d1fference edﬁation Firgt, we consider the

. ) ) ' 3 . A

9 ’ : ’ . ‘ . 5=
ERIC ¢ . 5 1 o - o

4 L P . N -
Noa e . . : . -
a8 .

Y




. -

* .f , .- . \ . ‘

. ]
- poﬁglation at the beginning of the nth trme period. o3 A sum of $1,000 is invested at 8 percent intereg#Compounded
Then the change in size of the populat"ion during that . quarterly.' When does the investment double ]
time period *n+1 ) Xn')hls population growth is ' 4.7 A man in é‘fft, $1,000,000 at agé 20, invests it at 6 percent
assumed to beéWproportional to the population at the el ) “~

. interest co“nrpounded annually, and spends 10 percent of the

beginning of thﬁime period, that is,

\ s

amount each year. If he I.ive's to be 70, how much will his

xn+l - Xn = axn . son inherit? -
where a is a constant of proportionality. Thus, we have 5 - The population of a city increases by 25 percent each year .3
. a first order d1fference.equat10n If the population was 100,000 in 1970, what was it in 1950
'
. Q X'n+1 _ (1+a)xn = 0. B 6. Radium decays at the rate of 1 fercent every 25 years. Let
° \ - \ o be the amount of radium left after n of the 25-year periods,
’ * We see?that population grows under these assumptions where.r, is.the initial amount. Find a formula for ry- How
ltke money in a compound interest account. n a sense, ' much is left after 100 years? How Jong does it take for half
ignoring population retardants is like ignoring taxes. ¢ of it to decay? . N - S
D
S The solution ofr the difference equation is . \//
. @2an x, = (1+a‘)"P n=1,2,3,... - . 2.2 Nonhomogeneous 'Equations .
’ where P is the initial population. For example, if a Let us ‘tl:m to the nonHomogeneous difference .
colon’y of 100 rabbits increases each month at" a rate of equation . ¢ -
"s0. percent then P = 100 and a = 0.50- so that at the end (2.8)- = Xpe1 -bxp S &, 7
of one_year, the population will ‘be . . \ “ s
1 y . 1
. ] where the g,'s may be nonzero. Instead of attempting a
. N X1, = (1.5) . . . divect iterative procedure as before, we shall examine -
- =12 574 the relation between solutions-of this nonhomogeneous ‘.
\u o . . ‘equation and the . assoc1ated homogeneous equation.
* ~ < . . .
Exercises . ' +Suppose that {xn(h) } is any solution of the associated
. <
1. Find the general solution of the following; . - homogeneous equation, so that
- . 1] . -
a. x A= 5x =0 . . (h) (h) _ . ‘ ’
- n+l n . (2.9) ' Xp41 - bxn = 0; .
b. -2 \ . . . ' )
- 3’(n+l 2xn R and suppose that {xn(p)} 1s one partieular solution of the
.
. . ’ : - "nonhomegeneous equation, so that
- sv- Co X = X . ’ -
e n+l n
. ‘ ‘ ’ (p)..
‘ 2. Solve theafollowing: - (2.10) ?( %ﬁ( . .
. § “ o
&
a. X = an, X = 1 i & - Addmg these two equations together and arrangmg terms 5
. s # gives us " ¥
% X &
. . b. an‘”, + 3xn 0, xs = 3: s

Aruitoxt provided by Eic: B

.
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(2.11)

[xn+1(h)'* xn+1(p)] ) b[xn(h) . xn(p)] - g .

N

Also,

is also a solution of

has general solution xn(h) = C(- 3) we see by

This shows us that xn(h) X (p)

the nonhomogeneous equation.

The interesting feature is

direct’ inspection that X, (P) _ 1 is a partic

-

ular solution

that every solution of the nonhomogeneoue equation can be
obtained in this way.

™~ To see this,

let {x } be the general solution of the
nonhomogeneous equation, and let {xn(p)} be a particular
solution. That is, {xn(p)} is amr explicit solution
containing no undetermined coefficient. A particular-

Solution can be thought of as corresponding to a specific

initial condition. If we now define {x

DC) IR ¢

} by setting

n n n
we obtain
- (h) (h) (p) (p)
Xp+1 - bxn = [ n+1 %n+1 ] - b[x -X ]
‘ - ] (P) _py (P)
. [ n+1 bxn] [xn bx
) T8yt gy
- =0, . .
- Therefore, {x (h)} is a solution of the associated homo-
geneous equat1on Hence, ¢ '
. .\ (2.12) \xn = xn(h) + xh(p)
\ § -
is the sum of the general solution of the associated
~homogeneous equation and a particular solution of the
nonhomogeneous equation.
Example 2.3. Solve the difference equation .
Xpe1 * 3xn =4
> /: &
with initial.condition Xg = 5.
(g
ol - We flrst find the general solutlon; saving the £
'n1t1al cond1t1on for the end. The associated homogeneous
equation Lol 9

[RIC »- - 53 -

? PAruntext provided by eric . -

of “the nonhomogeneous equation because 1 +3=.4.
Therefore, by the above discussion, we conclude that the
general solution of the nonhomogeneous equation is

X, = xn(h) + xn(P) ’ - x'

c(-3)" + 1.,

-

We now use the initial co dition Xy = 2 to find the

appropriate value of thy constant ?: Since

)

n

Xg =C(-3)" +1=7C+1 : .

the 'desired solution is

]
E-N

we obtain C
= (_zyM
x, = (-3)

Hence,

Thus the procedure for solving nonhomogeneous linear
1equat1ons is as follows:

1. Find the general solution {x (h)} of the
assoc1ated homogeneous equat1on ’ s

2. Find a particular solution {xf(p)} of the non-
» -homogeneous equation.
3. Add X, = xn(h) + xn(g?

solution {kn} of the nonhomogeneous equation. ’
“F

CATI
R

to get the general

4. 1If there are initial conditions, use them to
find ‘appropriate values of the constants in
the general solution. ) <(

This procedure actually applies to any Zzneqr d1fference
equation. It will be used later when we discuss second
order linear d1fference equat1ons

- The problem in s 1v1ng nonhomogeneous equations thus
hinges on finding particular solutions.
“universal method for doing this,
is compTicated,

¥

There is no
and if the g1ven {g }

it can be a diffitult problem. However,

&
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for cases of an elementary character, particylar
solutions can be fouhd w}th relative ease. Wel!first
Sronsider the case gn = a, a constant.

-

2.3 The Equatlon X

a

N+l bxn = a ¢

Tnehdlfference equatlon Xp+1 - bX, = a where a is

a given'tonstant is e3511y solved. There are two cases
-to- consider: L

s *

b = 1. It 1s readily checked that the equation

.

Ny X - X = a .
e n

has a partieular solution X0 (P) . na since (n+l)a - na = a.
The general solution of the homogeneous equation
n+1£i X, = 0 is X, (h) . C(l) a constant. Thus, the

general solution 15 ‘
.

X

(2.13) x, = Q + ma.

-‘ v
W

@ (ii) b # 1. We note that if {x } is constant, then
the difference equation becomes 51mp1y a linear equatﬁon.
Thus if xn(p) = X we have

. o Leg v e P
x ~“bx'="a "

X
and since b # 1,

) ., =
X5 P X 1%

The genéral solution of the associated homogeneous equation

-Nn
\

Thus, the-general solution of the nonhomogeneghs ‘equation
when b # 1 is . 7

(1214) X, =

.

Example 2.4. The Tower of Hanoi is a puzzle consisting
of a board‘'with three oegs andug‘circular rings of
decreasing size located on one of the pegs (see Figure 1).
The problem is to transfér the rlngs to another peg by ‘
moving one ring at a time and nevel.plac1ng a ring on

top of a smaller rlng‘ The third peg can be-used as a
temporary resting:place fon rings during the trangfer

process. We ask the question: How many moves are

3

il

required to accomp11sh the transfer,,leav1ng the relative

position of the rings unchanged? '

Figure 1+ The Tower of Hanoi.

. e = '
. Let X, denote the number of moves it takes to move

LIS

n rings from one peg to another. Then x:

X, by the recurrence relation

h+1 ‘is related to

= 2x_ +1

xn+l o

because we can move n rings to the second éeg in X, moves,
then transfer ring n+l to the third peg in one*move, and
finally move the n rings from the second peg to the third
peg in anéther X, moves. Hence, it takes . -

X, v 1+ ﬁn = 2x, «+ 1 moves to transfer n+l rings.

In this case b = 2 and a2 = 1 so that .the general
solution is . :

n 5 1
Xn—C2 ——2-




%

El{lc

= i

Thus,

The initial condition X, = 1 yields C = 1. the
Tower of Hanoi with n ringsican be solved in X, = A |
& / ’

moves.

Example 2.5 (Annuities). .In Example 2.1, an initial
amount of money P was placed . i&\:n account that earned

interest compounded at reguIar tervals. In an annuity,

equal amounts are aep051ted in the account at éach
1nterest perlod so that the amount grows with additional

;'L!u type of.
ggaliy handled by
insurance companies for retirement fund$ college expense

AN

dep051ts as well as accrued interest.
account is called an annufty and is u

funds, and so on.

. .
The grow}h of money in an annuity can be described
by a difference equation. Let X, be the amount in the
annuity after n interest periods, and suppose the same
amount P is deposited at the beginning of each interest
period.

If the interest rate {is r, then

P 1}

Xne1 = (previous amount) + (interest) + (deposit)
=X, * rxﬁ + P . .
= (_1+r)xn + P,
Hence, we haveéthe,dlfference equatlon
(2.15) X 41 " (1+r)xn =P
\ -
with initial condition x, = P.

0 .
From above, we see that the general solution is

<
p N,
= m S

= C(14r)® - %. .

x = C(1+r)" +

n

Since Xg = P, we have P = C - P/r so that

C:P#B: P[k}_‘].

by T

.
]

Theniwe have

62 TS
%

. determine”what deposit is needed to achieve the goal.
For exdmple, suppose‘r = 0.08 compounded annually’and we
wish to have $10,000 at the end of 20 years. What should

»(2.161 Lox, =

~Using a calculator, we find that

oo -2 ~

) (1¥r)n+l -1 ;

T

It is_common in annuities to set a goal and. then

our annual deposit'P be? = 10,000 so we must

=V§ want izo
solve
: 21
1.08 -1
- (—6%R—P = 10,000

P = §192.32.

It is instructive to graph the solutions of
difference equations to get a feeling for the long-range

behavior of xh as n gets large. We shall do this for

the-difference equation x bx = a. We know from

n+l1 " n
Equation (2.14) that the general solution when b # 1 is

= CbD + a

n % .

If |b] <1, then b
Consequently, X,

X

approaches zero as n gets_lafge.
This is illustrated
in Figure 2°where lines\c nnectlng succe551ve values of

+ a/(l b) asn - o,

x, have been drawn for visual emphasi: e assumegthat
%0 > a/(1-b) and b < 0 in the graph. If b > 0, then the
values of x, simply decrease steadily instead of oscil-

lating as shown. ., T
A : g

NN AL

Figure 2. |b] <1 and b"< 0. ° 8’7

& o~




If b.= -1, then X, simply oscillates between x, and supply

“Xg*a as shown in Figure 3. . curve
3
If b > 1, then b" » = as n > «*and the graph would
steadily rise. If b < -1, then b grows large :n

price

demand

curve\/

.y

absolute value, but alternates in sign. This case is -

illustrated in Figure 4.

N . A% ) ) ~ quantity
X, e _ . N e Figure 5.
|
- o " . - , as grain or hogs are good examples of lagged sggply d
. -x_+a ;47 v V. ~ v, adjustments. A fall ain p;{ce one year causes a farmer
{ 0 ' ) . : to.cut.back-preduction the next year, and the decreased
: — N . ; ; = ¢ - : ; > n supply then causes a_rise in price during the next year,. -
1+ 2 3 -4 5 6 7 8 and 50 on. Prices thus rise and fall cycllcally
Figure 3. b = -1 ) An elementary model u;ing.difference equatiens can
. ) . be used to analyze the market stabiiity.of these lagged .
“adjustments. Let p, and s, denote the price and supply, y
Axn ) - respectively, of a prodwet in the nth year. we assume

(2.17) P, T2 - bsn, o ‘ N
\\\ ¥ B, where a > 0, b >0, since a large supply causes a low '
a &

= g+ price 1n a given _year. Similarly, we assume that price
_%.lb £ ) p

- __-- - . o and supply in alternate years‘are proportional, so that
X the lagged adjustment is given by
. , - (2.18) Pp = ksm1

.

|
1 : |
where k is a positive constant ofs.proportionality. If . . ‘

» "

Figure 4. b < -1.

o
A%
' ‘"T

we concentrate on price, we can combine these two rela-

tionships to get a difference %quation for the price:

= Example 2.6 (The Cobweb Theorem' of Economics). In the “
- mafketplace, the supply and demand of a productﬁaré ~ e ’ Pnsel %38 7 bsn+1
closely related to the price. A reasonable relation-in ( ]
e many cases is illustrated by the curves as shown® in i ' ma~b X , : i
i Flgure 5. A rise in prices lowers consumer demand, but Thus’, we obtain )
increases supply since producers wish to take advantage g .
of the giigher price. However, a time lag occurs’as .(2.19) Pye1 * %pn = a. - (JTS -

S prices and supply adjust to changeg. Farm products such 16

' > j“j 15 - ' -
ERIC & '

. > .
59‘8‘ ~ ?C'i ' V « /.
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X . .
* o s \
Y i
\ - R

-b/k instead of
*b, the solution of this difference equation .is given by

As shown above, but with cgpefficient

'(2.200 . ps

1
(@]
—
’
o
[ ——
=
+
]
+
[

3

- C['E]n -

The long-range behavior of the price thus depends on the.

size of b/k. ’ S,
2 Case 1. If b/k < 1,"then Py F___F as n » « and

the market price tends to stab111ze Price varia-

tion is shewn by the -graph in Figure 2 on ‘page 14.

Case 2. If b/k = 1, then P, oscillates between Pq.
and ‘Pp * 2,-50 the market is unstable. See Figure
3 on page 15.- e

LN Case 3. If b/k > 1, then the osc1llat10ns of p,

become larger and" larger. The market is unstable
butethe model fails when the price becomes megatlve

See the graph in Figure 4 on page 15.

- The lagged adjustments can be displayed dramatlcally
by plotting the changes on the supply and demand curves.

We illusttate cases l1.and 3 in Figure 6. /
. supply ‘
‘ T curve o . supply
N 1{*

Po F——-~A---

B I ‘ T

. . T ‘- - ¢ ;
o ‘e
v 3]
- = - deman N < -
. a : curve’ a demand
L4 curve
quantity . %Pantlty
Case 1 (stable). -t- <. ! Wnstable). -t- >T1.
Figure 6. " ‘ »
- ‘ -
S . . 17
Y -
T}:( : agg)\) . -
ngﬁﬁm . .

7

>

. that the above analysis is refefred to as the Cobweb

e

The suggestive appearance of these pictures 2 the reason
Theorem in economics Note that b and k are the slopes
of the demamd and supply curves., Thus, - 1§ supply
adjusts more radically than demand to price changes,
The

In case

then the market will tend to stahilize (case 1).
reverse situation leads to instability (case 3).
2, the cobweb is reduced to a rectangle that is retraced
over the years . . \

.
Exercises -

I. For each of the following, find the general solution and then

the solution satisfying the stated_initial condition.

a. oo T Sk =13, X =5 3 S
b. ntl ¥ ;n =7 ~x0 =1 .
‘c.. 2x\n+,'-xn=ha xg = 1
2. Starting at the day of birth, parents geposit-SSOO per ;ear

at 6 percent interest compounded, annually. How much is in the

account when the child }urns 19 years old?

.
3. In 1626, Peter Minuit of the New Netherlands province
If this

amount had been inVested at 7 percent compounded quarterly,

purchased Manhattan island for goods worth $24.

find the value of the investment in 1976. (The amount, -approxi=-

mately 850 billion dollars, is more than Manhattan |s wor th
today.)
. .
4, (Amdrtization{of loans.) Suppose an amount L is borrowed And

is to be paid in equal iﬁ%tallments such that each payment is

to include interest on the unpaid balance. That is,

»

new balance = old balance + interest - payment.
.

Suppose’ the annual interest rater is comppunded monthly (i.e.
?/12 per month) and the monthly payment is P. Find a formula
for Bn, the balance after n gayments.

) v " .

18




by imitating the form of gy

ERI

Aruitoxt provided by Eic:

Apply” the result of Exercise 4 to a house mortgage of $30,000

at interest rate r =.0.IO to be paid in 20 years. What must

(Mrmmhw;mwwml’MfVMWmmhin {s paid over the
20 years? ) "Lgnogt\*\\\\\\_i

Suppose that the interest rate on a mortgage is 10 percent
compounded monthly. |f you can afford to pay $300 per menth
for 30 years, how much money can you borrow?

that B, < 0.)

(Estimate L so

360 .

(Pizza slicing.) Show-that n distinct Etraight lines i1n a
@

plane that all pass through a common point divide the plane

into 2n regions.

€

Suppose that the current price of oats is Sl.2§ per bushel
and that the price P, of oats n years from now satisfies

= \
Poel * 0.6pn 1.6. Sketch the graph of Py

¢ ' .‘

The Method of Undetermined Coefficients

.

K The "method of undetermined coefficients'" is a
A ~ - 4
method of finding a particular solution of a nonhomogeneous

di fferenceﬂuation

bxn = g,

(2.21) X o1

If g has a simple form, the
method is often successful. We shall illustrate the

method with a few ekamp};s,

Example 2.7. \(1) Find a particular solution pf the
equation . s

(2.22)

Xpep * an = 3n + 4.

Because g = 3n + 4, we attempt a solution xﬁ(p) = An + B
where -the coefficients A and B are to be determined. This
is dong by putting it into %quation‘jZ.ZZ) as follows:

{A(n+1) + B] +'2{An + B) = 3n + 4.
Collecting terms, we™get

3An + A +.3B = 3n + 4,

Th1is should be valid for 'each value of n, so that

éll = 0; A-+ 3B = y

)

n I: 40 « 3B = 7.
solying for A and B, we obtain A = 1 and B = 1. Hence,

.

n = n+l 15 a particular solution of (2,22},

(2> To find a particuldr solution ot the dirfference.,

equation

“n+l

we try xn(p) = a2l

.

so that A = 2.

2n+1
'

Difficulties can arise if the given {gn} has the
same form as the solution of the associated homogeneous
equation. Héwever, multiplication by n can‘often resolve
the problem as the following example illustrates.

Example 2.8.

(1) A particuld} solution of the difference
equation ’

' _ N
Xp41 " 2xn =2
cannot have the form A2" since this 1s a solution of the
associatv( homogeneous equation. We try xn(p) = An2l. -
Substitution yields

A(n+1)2"*1 . 2an2® - 2P

so that A < 1.

(2) For the equation x
X () . An + B fails.
n (o) I
X, = An“ + Bn.

nel " Xp =0 the attempt
Multiplying by n, we try -

This leads to the condition

2An + A + B = n, so that A = 1/2, B = -1/2.

7

Thus, xn(p) = n2" is a particular solution.




Exerclses -~ ) - . ;"
1. Find the general solution and then the solution that satisfies

the given initial condition.

a. LN 5xn = 3n, X = 1 , ’ .

b Xoel * R = Qn&, Xg = i . ‘
c 2xn+] tx o= 2(, Xy = 2

d, Xl T % T n2n, Xq = 1. \ ‘

Suppose n’straight lines are draﬁn in a plane so that no two
lines are parallel ahd no more Qhan two lines intersect,at any
point. Let X be the number of different regions deterﬁined
by the lines._ Find and solve a difference equation to derive

a formula for x - Noteé that x, = 1.

: - 0.

© An empty lake is stocked with fish by putting in 100 fish the

first year, 200 fish the second year, and so on. Through
reproduction the number of fish increases by 50 percent each

year. How many fish will there be after n years?

S

(3.1)

-

3. SECOND ORDER LINEAR DIFKERENCE EQUATIONS

- R —"\
We now consider equations of the form

X + ax_.,'+ bx

n+2 n+l n - &y

The associated homogeneous eguation is

(3.2)

’

Xpep * ax g ¢ bxn =-0.

,The relationship between solutions of the Equation (3.1
and the associated Equation (3.2) is the same as for first

order equations.

[
£1

"That is, if {x (h )} is the general solutlon of the

homogeneous Equatlon (3.2) and if {xn(p)} is a particular
solution of the Equation (3.1), then the general solution

Q
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gives

of (3.1) is given by
= xn(h) + xn(p).

X
n

Thus, adding a particular solution of the nonhomogeneous

equation to the general solution of the associated

homogeneous equation yields the general solution of the
nonhomogeneous equation. The verification is the same
as in the first order case.

3.1 Homogeneous Equations

Before developing techniques to solve homogeneous
equations of the form (3.2), we make some preliminary
observations. First, if {u } and {v,} are each solutions
of Equation (3.2) and if C1 and Cé are constants, then

(3.3) X, = Clun + CZVn

is again a solution ef Equation (3.2). This is directly
verified by substltutlng (3.3) into Equation (3.2) as
follows: R

(G4 CaVnag) * 3(C UL #Covy )+ b(Cqup+Cyv )
T Q(Uneptaupghuy) ¢ Cz("mz"a"n:l"b"n)
. =€ - 0+Cy0
= 0.

The zeros result from the hypothesis that {u } and {v }
tach satisfy Equation (3.2).

Thus{ if two different solutions can be found, they
can be combined as in (3.3)‘above to yield other solu-
tions, We next observe that two different solutions are
actually needed to generate the general solution, {x }.

It is possible to express any x in terms of X and Xy
by successive calculations. For n = 0, Equation (3.2)

@

. X, = -ax1 - bx0

22
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and n = 1 yields

.

X3 = -ax, - bx1

H

-a(iaxl-bxoi - bx1

L b
{a -b)x1 + be.
For n = 2 we' gét after simplification that
x, = (2abea®)x, + (b2-alb
Xy T (2alx-a )xl ( a” )xO.

Proceeding in this manner, we see that the value of X, 1s

uniquely determined by specifying values of the inatial

t&fms X, and x g
” Xg 1

This 1teration process does not lead to a useful
formula in general, and without a computer it 1s tedious
and not practical.. However, if we set G Xp and C, = x

then this can be used to show that the general form of

1’

solution of the homogeneous equation (3.2) is

X = Clun + A

and v, are determined by the coefficients a and

b as indicated above.

where u,
It can also be shown that {un} and
{v } are themselves solutions of the homogencous equation.

In summary, the general solution of the homogeneous

equation - s
(3.4) Xp41 +.’axn+1 + bxn =0

is of the form™~"~ - '

(3.5) X, = Cju + Cpvy, ) !

where Cl’ C, are arbitary constants and {un}, {vn} are
distinct solutions of the equation. .

Exercises
1. Verify by direct substitution that u, = 2" and v, = n2" are

both solutions of 1 Y '

- . p'),
‘ ~3 23
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- 4x +hx =0

*n+2 n+1 n ) .
N
so that the general solution is .
_ n n
X, = C’Z + C2n2 .
2. Find thesolution of Exercise | that is determined by the
initial conditions Xg = ! and x, = 2
3. Show how the conditions Xy = 16 and xg = 32 for Exercise | o
lead to a system of equations in Cl and Cz. Solve for C] and

Cz, and thereby find the solution satisfying these conditions.

[

3.2 The Auxiliary Egquation

We scek solutions of the homogeneous difference
equation -

(3.6)

X + ax

n+2 + bxg = 0. ‘

n+l
Since first order equations have solutions of the form
Ay = A\, oa geomefric progression, let us see if similar
solutions exist for second order equations where X will
be a constant involving the coefficients a and b.

Substituting X, = A" into the-difference equation, we

get.

(3.7) A2 oML L

Re)ecting the trivial zero solution, we assume X # 0.
Then canLelling A" in the préeceding equation, we get

AZ +al +b=0. -

This quadratic in A is called the auxiliary equation of
the difference equation (3.6).

o

Applying the quadratic formula, we obtain the ‘roots

(3.8) N, = 28 * Ja® - 4b . -a_- jaz - 4b |

) —— P

The genéral solution of the difference équa;ion depends

on the nature of these roots. Three cases arise:

24
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. .. Ty
(i) Al and A, are'real and unequal (az- 4b > 0)

'

(ii) A and Ao aré real and-eéqual (a2 -4b = 0)

RS
. -

(iii) Ay and A, are complex conjugates (a2 -4b < 0),

Case (i). 1If Al and A, are-‘real and A # DIN 25 “then

the general solution of the. homogeneous d1fference equa-
tion (3.6) 1s ‘

. _ S 1 n
(3.9) s X, = CIAL' + C%AZ

Since X a%d X, satisfy the auxiliary equation, we
see that u_ = x

n
of the difference equation. ﬁhus, according to the dis-

ln and vy = Azn are twe distinct solutions

cussion in the preceding sectlon, the general solution

is X, = Clun + CZan This g1vef us the stated solution.;

’

Example 3.1. We are now in a position to derive a formula
for the Kibonacci numbers. The Fibonacci numbers {x }
satisfy the difference equation
o -x =0
with initial conditions'xd =1, x; = 1. The auxiliary
equation A% - A -1 =0 has solutions

A, =15 _1.- /% 4
. 1 2$’2 2 N

t

Hence, the difference equation has general solution

SRR (R R

We .now apply the initial conditions to find the valdes of

C1 and C,. The éonditions X = 1 and X; 71 lead to a
system of two equations:
C1 + C2 =Xg =1 .
(3.10) .
17+ c..+ (L= /5 = x.em= N
B S S 2 A Tl Ul A

Solving .this §ystem, we get

A
-d

ERIC - 7

1
| e

- (3.13) v, = nu

C_1+/5'C_1-/s"
1~ = v 2T T T o ,
2/3 2/% .

®
Hence, the formula for the nth_Fibonacci number is

— =_1_(1"/5]""1-L[1‘/5—J"+1
n\/g__z—_ /S— )

'

This may be a somewhat surprising formula in view of the
fact that X, is a positive integer for every n.

"Case (i1). If A Ay = - %,then the generél solu- "~

tion of the difference equation (3.2) is
\

‘ -
(3.11) x, = (€] + ncz){-;}J". ,

In this case, the auxiliary equation is (A+a/2)3'= 0
which has only one root. We obtain one solution,

(3.12)  u_ = (%]“ ,

to the difference equation, but we need a second solution
in order to obtain the general solution. This is done by
multiplying our one solution by n;-that is, we let

n’ . -

Direct substitution verifies this is in fact a solution.
Thus, the general solution is

= Cpup * Cpnup = (Cp + nCy)u, ..
as Stated in Equation (3.11).

.

+ Example 3.2. Suppose gamblers A" and B play a éame of

matchlng pennies where A%B start the game with NA’NB

penn1es, respectively. The game ends when one player has

lost all of his pennies. We assume thd coins are fair so

that each player has probab111ty 1/2 of' winning on each

play. What is the probability t&at A will win all the \

'

pennies? ’

Let P be the probability that if A has n pennies,
then A will win the game. Let N = NA * Np. Clearly, .

¢ ~ 26
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Consider a 3alue of n such that A
A will

P0 = 0 and PN = 1.

has n+l _pennies and 0 < n+l < N. After one play,
have either™n+2 pennies or n -pennies, depending on

whether A wins or loses on that play. Therefore,

1 1
Pherl = 2Ppez * 3P

Hence, we have the difference equation

P 2P + P = 0.

n+2 = “"n+l n

The auxiliary equation

AT <24 +1 =20

has roots AL T A, =‘1, so that the_general solution is
pn } C1 + Con-

Since PO = 0, we get C1 =

1 = PN = CZN’ so that CZ =

0, so that Pn =
1/N.

Czn. Also,
Hence,‘the desired

-probabilities are

@

O

ERIC
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= n -
Pn ﬁ;—;—ﬁz, 0 <n < NA + NB'
7

.

The probability that A will®™in starting with NA pennies
is therefore :

3 p = _ NA . 14 - p

We conclude that it 1s unwise to pﬁay an even game &gainst
if A
starts with 10 pennies and B starts with 90 pennies, then
the probability that A will win is only 1/10.

an opponent with greater resources. For example,

Case (iii). If Al and Ay are'complex, then the
general solution of the homogeneous difference equation
(3.6) is ; -

{

rn(C1 cosno + C2 sinn 8)

(3.14) X, = .
where r and 6 are given by by
27

U ¢ J ’

L. b - at

r = /b and tan u = n

The derivation of this solution requires some
. . 5
familiarity with complex numbers. If a~ - 4b < 0, then
2

the auxiliary equation 3~ + a’» + b =

A= vdb - a~”

= - + 1 -

a
1 ™) 2

0 has complex root

-

.
N

o2
.
-

N
> An

These can be written in polar form

Xi r(co§ 5 + i gin 8)

AZ r(cos & - 1sin6) -

where r is the modulus r = |A;| = [X,] = /b and 8 is th

argument of M as given above. Then DeMoivre's Theorem
gives us

’

n n . . .
>‘1 =r1 (cosnf + 1sinn?{} o

n
S prinn o
/ .

n A )
= r (cosn¢ - y51nr1v)
, e

. / . . .
These are complex solutions, to the difference equation,

but we wish to have real splutions. This is done by

taking real and imagipary/parts. Setting
u_ = 1 A M= M cosne
n 72" 2 ro«
v =2 m] < 1™ sinne
n 2111, 2 r sinne,

/

J
we see that u and/ﬂ/n are. solutions because Aln and Azn

are solutions. TKe general real solution is thus given

by X, = Clun + Sévntas stated in Equation (3.14). -
Example 5.3”‘€fhe difference equation ?
. XY - 2Xpyq * 2%, F 0 1
has auxiliary equation” J T ‘
V' -t z2-0 g
. ¢

S

]

28
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with roots o ;. ~.~"has roots Al =1 and 4 = 2, so .that the correspondlng

¥ * »
Y T .. om homogeneous equat1oy has general solution {C + G 2y,
A = 1+i=/7 cos”z +1isin T] ' ;
’ i - . ‘ As -an attempt to find a particular solutlon, let us
; Ay =1 - i = /f[cos % -isin %J, ) . try x (P) . AK" where the coefficient A is to be determined.
!

\ Subst1tut1on into 'the difference equation yields

Therefore, the general solution of thé difference equation n
is given by AK" (k~1) (k-2) =

. 2"/2[ nw ) for all n, so that A pmust satisfy

nn
X = C, cos + C sin =
n 1 K3 2 4 ACK-1) (k-2) =

If we also have an 1n1t1al condition, say Xy = S, X = 2,

If k #1, k # 2, then we see that
then C % and C1 + C2 = 2 so that the solution is .

' v *A = _11,_2
x, = 2n/2[5 cos %P - 3 sin %F). _ 1 (P) _ 1.n .
) | : . ) - N » . For ex?mple, if k - 3, then A = 7, so that x **/ = 73 is
Y 3.3 Noﬁhomogeneous Equations 2 part1?ular folut1on and &
. We"now turn to the nonhomogeneous equatioﬁ Xp = él * C22n * %Sn»
© (3.15) - xn;Z + axp,q * bxn = fn. ' - .is the general solut}on oé the nonhomogeneous equation.

- ’ A% with first order linear equations, if we add any . | ’ However, if k = 1 or k =-2, that is, if k equals .

particular solution of (3.15) to the general solution of either of the roots of the auxiliary equation, then no

‘the- associated homogeneous equation, the sum will be_ the value of A sat1§f1es Fhe required condition. This is not

general solution of the nonhomogeneous equation. Thus, at all surprising because these values of k yield solu-

we wish to determine a particular salution of (3.15). tions of the homogeneous equation and therefore could

+ The form of a particular solution can often be inferred. not very well produce solutions of the nonhomogeneous

from the nature of the g1ven f and this leads to the equation. Consequently, the form of particular solutions

method of undetermined coeff1c1ents It is essentially must be modified for k = 1 and k = 2. The appropriate
. " the same approach as used in the first order case. We modification is to multiply the related solution of ths
illustrate the method with the following example. homogeneous equation by n. Let us look at the two cases
: . separately. ) R -
Example 3.4. Consider the dlfferePce equation X - If k = 1, then the difference equation (3.16)
) * - 1n % becomes .
(3.16) Xp47 3xn+1 + 2xn k . )
. -(3.17) x - 3x + 2x =1, ) ‘
where k i5 some constant. fhe auxiliary equation iz n+l n A , .
: ) 5 \ ! . . Since Al =1 is a root of the auxiliary equation, we
ATy 2=0 . a know the constant sequence X, = 1 is a solution of the
- ’ : 20 homogeneous equation and therefore xn(p) = A is not a
. RS R 30
. P‘}r) ’
Q ¢ . -
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. . parti\cular solution of the nonhomogeneous equation. But . C. X 42 " hxn+l +hx =30+ 2" .
if we multiply by n and try xn(p) = An we shall succeed. o )
. . . - . & d. X + = gi — <
' Substituting this into the difference equation, we get - n#2 T Xp T8I0 {2} i
R A(n+2) - 3A(n+1) + 2An = 1 - . : . 3. Consider a telegraphy system in which the symbols that can be
R ) .
transmitted are d fl- i -
. so that A = -1. Hence, xn(p) = -n gives us a particular ots, of I-second duration, and dashes, of
- 2- d ion. A
solution. . . seconds duration. Let xn— represent the number of distinct
) messages of duration n seconds. Fiwd a difference equation
=z 2 .
I‘f k 2, the dlﬂfference equation (3.16) b1ecomes for x, and so determine a. formula for x, - Note that X = |-

(3.18) ) - 2 = 20 (one dbt) and xy = 2 (two dots or one dash).
— . . b, Suppoée\ the in:rease of a fish population each year is twice

- | . . . ene N t' . . . o e
Now X 2. is a solution of the homog ous cequation, so the increase of the previous year. If initially there-are

(p) _ n - i i
we try X, = AnZ" as the form of, a particular solution 1,000 fish, and if there are 1,100 the following vear, find

of the nonhgmogeneous equation (3.18). Then we get . . the population in the-nt" year.

- .

= A(n+2)2n+2 R 3A(n+1)2n+l + 2An2t = 2" \ 5. In the preceding problem, suppose 100 fish are remove(f/;ach hd
. : . s . th : v
\’ so that v year. F':lnd‘the population in the n~ vyear. N
4A(n+2) - 6A(n+l) + 2An = 1
' - . ’ ‘o E SN
and hence A = 1/2. Thus, xn(p) = n2" 1 gkves us a-par- .
ticular solution of (3.18), s " ' . 4" ANSWERS TO EXERCISES \
R S i *
Exercises I ‘. N ection 1. page 3
. . . P la. X - x.=3, x,=3
1. Find the general solution and then the solution that satisfies n+l n 0 : - ~
x, =1, x, = 1. = =
D 0 1 b %ot 3xn’ *0 3.
a. X -x =0 .
n+2 n . ~ ‘ €. x -x =2", i -
. a n+l n o . .
0 b. x +2'+ X 7 6x =70 - ‘
n ntl { Tn . 2. 3,7, 15, 31, 63, 127, 255, 511, 1023, 2047, .
TR AT PR . ‘ 3. 576,
. - & 0. -, ) k, ;b 3, -
R o3 2,03,k 7,
2, Find the general solution and then the solution that satisfies Section 2.1, pp. 7-8 t "
t 7
| = ceh
X, I,x‘=l. ) la. X cs", i .
— - N ’ .
a. xr'\+2 - an+I +6x =2 b. X, = c(2/3) . ‘
b. xn+2-lox + +3xn-2 81) ' c xn=c O
O 7 31 " . 32
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Solve (1.02)"' = 2 for n = 35 quarters; B.75 years.

6

Xoal ™ (1 +0.06 - O.I)xn = 0.96xn, = 10 .

*a

hos,

.

5. I:'n = r0(0.99)n, A 0.96r0, 1724 years.

4

’ ‘

Section 2.3, pp. I%S o ™

-l . -
la. xl? 1;-(23 5 3)..

b x = %-[5(-1)“” . 7].
'u n
c.  x ==3(1/2)" + &4,

18,393,
$485000,000,000.

- 12 rn 12 .
Bn‘)- L(L;'I —FE)(, + ﬁ)\ + —l-_-E P

«

P = 290, Interest-= 240 - 290 - 30,000 = 39,600
37,815, Lol

4 v

X+ -'—xn:- 2, X, = 2 has soluti_on x'b- 2n, . |

Section 2.4; page 21
0 n 3 . N 19 -
la. \xn-CS --En—-l%. -lfxo'l,thenC‘Tgi

bo X = C(-1)" + 202 - 20, 4f xg = 1, then C = 1,

e % = /)" 4 2L 4 w2, then € = 372,

T4 ox = (n-2)2". 4f xy = 1, then C = 3.7

-
- .
S

X

% ;%5“”. 100(n+1), Xo.® 0, has solutfon

-~

x = 600(3/2)" - 2000 - 600.

. .1, 2 .
*n) -+ n + 1, % =1, has solution X - -Z-(n +'_n,+—2).

4

Section 3.1, page 23-24

n

2. x =2" - "2
n

C|+2C

Section 3.3, pp. 31-32

n=
la. x = (II + Cz(-l) , X - 1.

n n |
b x = €20+ C(-3)",  x_ = 3(2

n+2

+ (-3)7).

g = (€ + ) (-1, x = (1-2n) (-)".

N

X, = Cl cos [%T] + C2 sin {nz_n]’ X, = cos [nz_n} + sin (%]

« n n .
2a. xn=C|3 +C22 + 1 CI

n- -
be ‘xn :'Cl + E23 -0 tl = 3/_2,

- n 2,n-3
C. xn (l:l + nC2)2 +n2 , + 3n

= - ﬂ~ H 21
d. X Cl cos {2]+C2 sin {2],

. x = x
3 n+2 n+

x, =900 + 100 - 2",

1000 + 100n,

+ X, the Fibonacci numbers, .

-




Return to:
STUDENT FORM 1 EDC/UMAP

55 Chapel St.
Request for Help : Newton, MA 02160

.
* .
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1. . How useful was the amoun of detail in the unit?

-Not enough detail to'understand thé unit

Unit would ‘have been clearer with more detail )

Appropriate amount of detail,

Unit was occasionally too detailed, but this was not distracting
+ Too much detail; I was often distracted N

b

-

‘How helpful were the problem answers?

Sample solutions were too brief; I could not do the. intermediate stéps

Sufficient information was given to solve the problems

Sample solutioqs were too detailed; I didn't need them o . ﬁ.
Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructorL friends, o® other books) in order to understand the unit?

® - ;
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Were any Qf the following parts of the unit confusing or distracting? (Check~
as many as apply.) . .

Prerequisites
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Examplas— : .

. Special Assistance Supplement (if present)
Other, please explain
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____Statement of skillg apd concepts (bbjectives)
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«__ Paragraph headings . RN
____Table of Contemts t
Special Asgistance Supplement (if present)
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SELEGTED APPLICATIONS OF MATHEMATICS
IN FINANCE AND INVESTMENT

M \ . )
1. REVIEW OF INTéREST CALCULATIONS;
THE DEFINITION OF '"e"; CONTINUOUS GROWTH

It is impossible to do any interesting or significant
problems in the theory of finance without understanding
continuous compoundipg of interest and, more generally,
continuous increase in\value with constant percentage

growth rate.

'First we review some useful terminology. We should
make clear the difference between interest and interest

rate. Interest is an actual sum of money, paid by 'a bor-

rower to a lender for the privilege of having+held a loan.
Generally the longer the borrower has the loan, the higher
an amount of interest he must pay. : Q

The interest praqtk is

\"an expression of an amount of money r time period,
usually per year, and it specifies how the interest itself
is to be calculated at.the end of any particular period ofe
time. For example, a lender may say.that on a: lpan of
\ $3,000 the interest rate is $25 per month, which could also
be expressed as $300 per year. This number in effect
determines a rule for calculating the interest at any time,
e.g., after three months the interest is $75, after two

years the interest is $600, etc. ¢ -

Interest rates gre normally expressed as percentages
“of the loan, ra}her*h as actual dollar amounts as above.
Thus the interest rate described ‘above could have been
expressed as "5/6 of 1% per month" or "10% pe;yyear o

Percentages, of course, are completely 1nterchangeable
with fractlons or decimals,

so we could express "10% pe?

year" as "0.10 per year" (the suppressed decimal in 10 is
" moved two places left)eor "10/100 per year" (the 10 is

placed over 100), which reduces to "1/10 per year." Also !

ERIC =~ - 9 : 3
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hard to read) and één be wriften as "0.833%" or "0.00833"
or "5/600" (which reduces 'Q/120").\ a

When interest is added to a loan to find the total >
owing, we.can divide tl{fe new sum by the original to find
the growth factor. r example, suppose the interest after
that $3,000 loah discussed above. The
interest rate was/10% per year, so in one year the interest
is S$300 and the fotal owing is $§3,300. Dividing $3,300 by
$3,000 we have/the growth factor 1.1 or 110%.
tract 1 or 100% from these, as appropriate, you have the
interest batk (1/10 or 10%)‘

dlrectlon also——add 1 or 100% to the 1nterest

one year is added t

If you sub-

This works in the other
as appropri--
ate, an you have the growth factor.

Exercife 1. The annual percentage rate on a loan of $1,000 is 9%.

is this interestirate as a decimal? as a fraction? What is the
mofithly percentage rate? How much is the interest for four months?
. ive%years? What are the growth factors for these two periods of time?

-

Suppose money is deposited in an account to accumulate

interest. To be specific, let $1,000 be deposited for one

year at 12% interest. (This may be usurious, but the nﬁm-
bers are convenient for illustration!) One pos§ibility is

that the interest earned will not be credited until the

end of the“year. Thus atithat time the $1,000 will have

earned $120 iﬁterest and the total value will be $1,120.

Now suppgse the depositor makes the following argument:

"If my $1,000 earns $120 in one year, then it earns'$60 in -
six months. I want the $60 after snsi months—or else 1

want it added to what you owe me, and interest calculated . - E
on it." The depositor would get slightly more at the end/{
of the year this way, since the $60 credited after 51x///
months would itself be earning interest fo& the second 1f
of the year, namely $3.60.  The total walue of the déposit

would then be $1,123.60. . e
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Now suppose the depositor is greedy and wants the
interest reckoned after each month. Then 1in each month
his money earns 1% (i.e., 1/12 of the annual 1interest rate
of 12%). So after a month $10 1s added to the account and
$1,010 earns 1nterest the second month; this earns $10.10
. 1n a month, and so during the third month $1,020.10 is
'earnxng interest, etc. At the end of the year Sl,lf6.33
_will be due, 4 few dollars more than under the previous
plan.

[f the depositor is s:{il greedier and wants the‘
interest earned each day to be added, or each minute, or
each second, the amount i1n the account at the end of the
year will clearly become gregter and greater. But how -
great can 1t get if the depositor is infinitely greedy?

Is there -an upper bound how muchllnterest can be earned
no matter how frequently the depositor demands.the 1ntereét s

be compounded?

There is a bound. Here's why: At the end of the year

N th? account will include the- original Sl,OO%ggpius the
. interest on it, plus some interest on this interést, plus’

interest on the interest on\the-jnterest, etc. Even if
this process is continued to infinity, it turns out a
finite sum is obtained.

The 12% interest on the $1,000 will itself be earning
interest for at ieast part of the year—actually, if com-
’pounding takes place many times, bits of it yill %grn from .
nearly the beginning and other bits not until near the end.
But ih no way could the interest on the interest exceed .
12% of the interest (12% of $120, or $14.40), because it
would only earn the full 12% if it were all invested for
the entire year. Now this second-level interest, the
"interest-interest," so to speak, also earns interest for
part of the year, but for the same reason as above'the
interest ea{ned by the interest-interest cannét'exceeﬂ 12%

< of itself (12% of $14.40, or $1.73). . .

- "

Aruitoxt provided by Eic: -

This reasonihg may be continued indefinitely. If we
can sum this series of-diminishing interests on interests
to infinity, we will surely have an upper bound on the \
total the borrower would be liable for at the end of the
year. This bound 1s independent of the number of times
compounding 1s required, because it 1s a valid bound for
every such number. For we have overestimated at each -
stage, and overestimated the number of stages, which of

course would inevitably be finite-no matter how often the

depositor actually demanded compounding. The upper bound

: .

1s 4 N
$1,000 + 12% of $1,000 + 12% of 12% of $1,000 + ..
o

This is a simple geometric series with first term $1,000

and common ratio 0.12; its sum, by a well-known formula
5

a'lgebra, 1s the first term divided by 1

from high-school
$1,000/(1 - 0.12) = $1,000/0.88 .

minus the common ratio:
= $1,136.36.

“"To see this direCtIy, in case you've forgotten the

formu QNS - . .

S = 1,000 + 0.12(1,000) + 0.122(1,000) +
+ 0.127(1,000) +
Multiply b} 0.12 on both sides: .
0.125 = 0.12(1,000) + 0.12251,000) +

Each term is turned into its successor. Now subtract,
and we obtain 0.88S = 1,000, as before. .

(Strictly speaking, we have assumed here that the
series coﬂVgrges, and merely‘determingd what it wouid—con-
verge to if jt converges at all. It is not‘hard to prove-
rigorously that it does indeed converge. It is done in

We use almost the identical

°

many elementdry textbooks:
trick.in- the section below on annuities.)

' Let us now proceed algebraically, so that our
results have more general validity. Suppose an amount P
is invested for n years at ap annual interest rate of r.

- n\ Y

- [VEW)
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Suppose that compounding occurs t times per year. Then
ach time intLrest is compounded the rate is r/t. After
the first feriod the interest is (r/t)P, and this 1s added

L)

to P for the second period: .
T o T
P+ fl" P(1 +\t)'

After the second period, th¢s amount is multiplied by

1+ r/t) (the 1 times P(1 + r/t) because the principal is
still included, plus r/t times P(l + r/t), which is again
the interest). At the end of each period fhe amount on'
account is multiplied by another factor of (1 + r/t). In
n years there are nt such periodsi-hepce at the end of n
years the ‘amount fhat R has grown to is - s

f

(1) A=pP+ D"t * , -

Thi$ is a very important and useful formula in ifs own
right, but we are interested in it for help in answering
the questibn posedkabove: What is the.effect of indefi-
nitely increasing the frequency of compounding? We want,
in the jargon of calculus, to’ take the limit as t-w.

Exercise 2. Let $5,000 be deposited at 8% annual interest. Find out
how large the account will be in five years jf compounding takes
Place (a) once; (b) annually; (c) quarterly; (d) daily; and (e) every

minute!

Exercise, 3. ,'Su°ppose a $5,000 doan is paid back double ir;glve years.
Find the annual percentage rate of interest if compounding' takes
place (a)_onqe; (b) annually;,and (c) daily.

. Q -

It i/shown in calculus classes that the expression
1 + z)l/Z approaches some limit as z gets very small.
‘The argumeht rests on the twin facts that the quantity con-
tinues to increase as z shrinks, but not without bound;s
3, for example, is easily shown to Be a bound. This argu-
hent_shows that the 1imit must exist, but it does mot

v

~ 91 '

- . . 4
greater than any bound. This limit, whatever it may be,
is denoted "e," and it turns out by further considerations
we can determine its value to be, approximately 2.71828...,
1

It would be nice to nail doﬁnléxactly which number
this is, but alas it 1s irrational (this.can be shown with-
out much difficulty), so it is not possible to express it
as a quotient.of~imtegers, nor to give it as a repeating
decimal. As a matter of fact 1t is a transcendental
number, which means it is not even the root of any poly-
nomial w@tﬂ integer coefficients (this is somewhat more
difficult to prove; it was first done by ‘Hermite in 1873). .
So it is also not poSsible to nail, the number down by

+specifying such a polynomial, as we can do for example with

Y2, which satisfies x2 - 2 =0, and is basically defined
by the propefty of satisfying this equation.

So we know that 1 plus a small numbey, raised to a
power that is the reciprocal of that small number, approaches
something whi¢h we have chosen to denote by e. It isn't
really essential to underst;hd where e comes from; the-main
things are that it's a number, its value 1s about 2.718,
and,(l + z)l/Z is close to it when z is small.

"This isn't quite enough to answer the limit question
about interest, however, In our expression P(1 + r/t)nt,
it is trup that r/t is getting small as t3e, but we are
nqt raising (1 + r/t) to the power t/r, which would ’be thet
reciprocal of r/t. If we were, the limit would be e. This
difficulty is easily remedied. Let us rewrite P{1 '+ r/t)nt
as P(1 + r/t)t/r]"r, Gsin& the well-known rules of expoﬁents.
The part in brackets goes to e as t increases) so the limit .
we seek is PeT. .. ”

Lgt us recapitulate What this quantity means: This
is the limit of the amounmt to which an] ihvestment of P could
grow in n years at +an annual intetest rate of r, as the
frequency of compounding,increases indefinitelyi It is
higher than any amount that could be obtained by any finite
number of compoﬁhdings, however large. It is also the
smallest number that has this property—it is just _exactly

- . O

Uy




Iarge'enough, We might say picturesqueiy that this

expression represents the effect\bf compounding continuously .

—that is to say, compounding at every instant. It is as

though intdgest is added exactly.as it is earned—the¥e is
no waiting period at all before adding the jnterest so it
oegins earning interest itself. In a sense it is the
natural and inevitaBle conclusion of the grS%dy lender's
line of argument %hat he should have any interest credited
the very moment it 1s earned SO that it in turn can beg1n

’

tOd earn 1nterest .

It is'important_to‘realize'that all of this does not
It _is a bit like trying to
talk gbout the bottom of a bottomless pit,
positive fraction.

make one formal whit.of sense!
or the, smallest
If you're going to compound intere’st you
have to wajt some amount of time or there is nothing to
compound. But any length of time you -actually wait is too
There is
“Nonethe-

Tong, as there would always be a shorter time.
simply.no way to compound "as often as possible."
less, the concept of continuous compoundinpg has intuitive
appeal,
way that is thorolghly logical and defensible. .

and is in-any case formally defined as above in a

The behavior of the“total investment's value over
. o &
time under continuous compounding is commonly referred to

as continuous growth. Note that the quantity changes con-

tinuously ‘now, whereds when we compounded t times per year
- - ‘ 3
it grew in"discrefe jumps and was constant in between.-*

v & ) .
When an investment P is allowed

| To summarize then:
to grow fors tsyears at an annual interest rate r compbunded

'contlnmpusly (or where ant initjal valué P experiences con-
tinuous growth for t years at an ,annual percentage ‘rate of

.
s
Son

" the fipal value is
’b @ .

Porn A

rt

A= Pe

-~

and, the concept of continuous growth takes some getting

used to, computationally it is much easier to deal with’

| Q ‘ . o, . 7
. R ; ,
85 . -

Vil

Y

. [ ]
Though there are obvious conceptial difficulties here, .

v

)

than discrete compoundlng, especially -for frequent

i

compoundings. Compare, for example, the calculation of
daily interest for one year at an annual percentage rate

ot . / N . .
,of 12% wersus the calculation of continuous interest:

-

Daily . Continuous
’ M i i
§J,ooo x {1+ 5%2%?)365 $1,000 x 012 € .
. . = $1,127.42 = §1,127.50 )

T

v v

i
IncidentallyL note also that as expected the continuous

compounding gives a slightly higher value.

. Many hand calculators have keys for calculating thesg

where x is*some nugber

This

. was$ the method used in the right-hand calculation above.
‘The calculation on the left is facilitated by the yx key:
-after dividing 0.12 by 365 and adding 1, hit yx, then *
punch in 365 followed by the = key. -

> 4
f .

quant1t1es easily. To calculate e

L]
puncp in x on the keyboard and then hit the e* key.

-

°
<

'y

Exercise 4. If $1,200 is loaned for 20 years at an annual percentage

rate of 5% compounded continuously, how Iarge does the account grow? -

> ’

Exercise 5. Refer to Exercises 2 and 3 and answer both questions if
kxercise > . A

compounding takes plage continuousl?.

o

¢ . 1.

2. APPRECJATION

N ’

Though the formulas for continuous compounding are
ve? useful in actual interest problems, they are even more use
ful for understanding growth in Vvalue éenerally. Suppose,
sfor example, that a piece of property appreciates in value
It is

not reasonable to regard the increast of $15 000 in value

from $30,000 to $45,000 over a five-year period.

as having occurred in five equal jump$ of $3,000 separated
One would expect that each year

by intervals of one year.

RN
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it would’ increase a fixed percentage in value. This is :

because any property.wquld presumably be increasing at

- any moment 4t a dollar rate that would be proportional to';

its value, and this in turn stems from the obvious fsct
“ that all individual dollars of this value would, be growing
at the 'same fixed rate.

v

Call the annual percentage increase r, so that in

. five years thé'property is worth $30,000(1 + r)
équal $45,000 by our hypothesis.

1+ 5)5 = 1.5, 1% r.= 9105 =

y* key again), and so r = 8.4472%.

that the succe551on of values at the end of each year

, which
Thus r can be solved
1.084472 (using the'
" What we are-saying is

must
for:

should" foxm a gebmetric prpgre551on rather than an arzth-

mebic progression. The values intrease in flxed ratlo

rather than by a fixed dlfference ’ .

Even this fggure we have 0bta1ned however, is mis-
- leadlng, for it suggests that the" property took a‘sxscrete

gump upward -in value'at the endiof each ‘yedr and remalne\dw
. constann otheruf%e, whereas‘presumably 1ts value wou&d ;\

have changed squtﬂlx and contlndously throughout the f%ve .
years. W use the férmﬁle Penr with =
/Set thle equal to' $45»000 and sotve for R ot .

- n'. 3 T e : Y
bR ~Sr

= 1‘5- Sr

~,,(The "ln" operatlon is, so to speak “the "opposite" of the

in 1, 5

> s

r = 8.1093%

.

) “ex" bperat1qn, and it qan also-be adcompllshed o1 most'

hand calculatorg by pre551ng a button.) ’ ‘ A
, . .
. Note that h one year at continuous compoundlng Wlth .

. this r, the growth factor is* -0 081093,5 1 084472, SO the
actual 1ncrease in a year is 8 4472% as shown in our

“$30,000; ajrd n ='5.

il

ear11er ¢aktculation.s ’ S , 3 .

'
R y f ] v e v .

\ P

'Exérci§E 6.
. an annuak percentage rate of 122 what will it be, worth after two

4

If a $100,000 |nvestment exper fcnces contlnous growth at

-

v

|-eyears?

o Taas T e L
I:KC . ‘: * . v .'j’ . -
L .
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en \example (see abové), Hf /o=

¥

Exerclse 7. If a house is purchased for $40,000 and sold aft;r

three years for $60, 000 what was the annual growth rate r? By what

percentage did it actually infrease in each year? (This can be
computed by two methods, which shouid.agree.) ' +
s - “ .-._'
) . 3. THE "RULE OF 72% ot .

Investors often use the douhl;ng-time of an i1nvestment
The

the more

as a good méasure of how profitable the investment is.

more rapidly you can double your money, of course,

desirable an investment is.

According to our forpula, el s the growth factor by |
which the valug of an investment will grow in n years at

' . When this factor is 2,

In2 = 9.6931.

th 69.31,
years times the 1nterest rate is about 69. _0ddly enough,

. tbis i, tie "R le of 72"! Actually, the figure of 72 is

more reasonable in place—€f 69 if r denotes the equlyalent

rate'r.

nr
e =

the 1nvestment “has doubled:

2, sonr = If T is expressed as a

percentage, nr = i.e. the doubltng time in

annual ;ncrease after allow1ng for continuous compoundlng,
‘thstead of» the actual instantaneous growth rate-—for
8.10933,
this growth rate there will b€ an-increasé.in value of
& 4472%. 'The slight difference between these two figures
wifl1 make the produé¢t "Toughly 72 1nstead of 69. Sb the

"Rule Gf 72" says B

_then in one year 4t =

.
- R |

2

, "The'product of the- doub11ng time b{ the actual
* annual growth ratd is-72."

s For example, money will double in 12 ygars at 6%,.in 8

years at 9%, etc. , )

R The Rule of 69 1s always valid, but
ing, the Rule of 72 is not.

o«

strictly speak-
It holds approximately when
the interest rate is .about 8%,\but breaks down for values
,o{ T much greater or uch less than this.

In practice, it
falways" holds.

'

Exercise 8. ' About how long wiil it take an investment to double at an

. effective annyal percentage rate dof 10%?

4 - 20

10

.
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Exercise 9. At what annual percentage rate is an investment grownng
R « that doubles in four years?
- +
4. ANNUITIES _ .
Next, let us consid%r a slightly more elaborate prob-

lem. Supposeﬂthat regular monthly additions -are made to '’
"""an interest- bearing account. - We will develop a formula '
* for the increasing sum in the account as time’passes.
»For convenience, let us assume that interest is compounded <
« . monthly. If the payments into the account are made regu-
larly-at some other interval than monthly, and the interest
. s compounded at the same interval (or more often depend1ng
on the situation), all our formulas will continue to hold

with suitable’ rein?erpretation of the basic unit of time.

Let G be .the. amount added to the account each month
and r be the monthly 1nterest rate thlch can of course be
obtained from the annual bercentage rate by\dlyld}ng by 12).
. We.will calgulate Sn,.the amount in the account during

' month n. During month 1, there is G on deposit,
At the end of thé month,
paid and a second sum of G is deposited, bringing the  total
At the end of

this amount is multiplied by (l+r) and

earning
interest rG. this interest is
to G(1+r) + G.on deposit during month 2.
this second month,
another G added,
deposit is G(1+r)2

so that during month 3 the amount on
+ G(1+r) + G.
infer that during month n.there is on depos1t the amount

Cont1nu1ng 11kew1se, we

s = G(1+r)""! ¥ G(1+1) + G.

+ G(1er)"
n *

You should be able to visualize this expression as the sum
of the following (in reverse order): a new deposit G, a
-/ month-old deposit of G with its interest (simple), a twp-

- month-old deposit of G with its interest (twice-compounded),

and so on up to the original dep051t with n-1 months'
Kl
10 1

FRIC f

s ,

1nterest .

. Now we subtract the original equation from this:

. account after twd and one-half years?

Now we can’use an old trick to express this quantity
more conveniently. (This is the trick we alluded to in
the first settion for summing a serres.j ‘Let both sides
be multiplied by 1 + r. .We obtain
(1+1)S. = 6(1+r)" + G(1+1)" + (1+1)G
' Y

rSn =’G(1+‘r)n

) .
Note that most of the terms cancelled because thére _were so

many in common, and we are left with a closed form expres-

*

sion. Thus we achieve our f1na1 result:

I
(3) S, = g[(1+r)" -1, /

Thls is the formula we. have been seeking. Remember, r is

-

the monthly interest.

This formula is of considerable value in its own right,
. L i . . .
but it can be turned to even gredter use ip understanding

.mortgages or, for that matter, any loan which is paid off
"in regular installments and on which interest is computed

only on the remaining b7}ance. ,

.
»

Exercise 10. If deposits of $100 are made monthly to an account

paying\Sz annual interest, compounded monthly, how much is in the

i
.

. v .
. , 5. MORTGAGES ’

Suppose
someone takes out a $20,000 loan at 9% annual interest and

Let us consider \ typical mortgage situation.
a monthly ﬁayment obligation of $200. (These figures, by
the way, are totally hypothetical and are chosen for con-
After one(month the
‘we divide 9% by

venience in illudtrating the theory.)
interest is 3/4 of 1% or S%SO.
12 to get the monthly interest rate.)

(As usual,

. . . ‘¢

© 10 ¢ ;

0f the $200 payment,.
12

T

’
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o .
then, $150 goes “ttoward interest iand the remalnlng $50 A ) interest due on the'origlnal unreduced principal and the
redu&es the principal. 1In the secghg month the debt is ° 1nterest earned on the counter loan). PR
$19,950. gttthe ‘end of the _sec®nd. month the 1nterest is The advantage of V1ew1ng the situation “n thlS o
$149.62. ut of thg $200 payment theré remains now $50..38 ‘manner, is that, although-nothlng has been change@ in-sub-
to go toward the prlnelpal so in the third month the debt .

N i ; © ' stance, we cah now apply our annu1ty formula, since 'that
3 ]
. (3 . S -
';s $19‘89949}f' P{?gect1ng aheag several months,- here's 15, in effect hhdt the tounter loan is. * '
“What happens: ., , - N , R
. . J . Ta Clarlfx matters, let's take a look at a, spec1f1c
— < . . loan and éxamine the first few months of boqkkeeplng, com-l
Toward .
Interest 2rinz?pal New Balance , puted accOrdlng‘to both the conventlona* and the nhew
- — [ . vLewp01nts Note that the: "net" column of Method 2 agrees

$149.25 | $50175 $19,848.87 with that of Method 1. v e ‘.
148.87 BiNE 19,797 .74 L . y et ®

i

148.48 -1 51.52 19,746.22 -y ' . Loan: $20,000 @ 93 per yea}; $200 mohuhly payment
148.10 "51.90 19,694 .32 T
147.71 52.29 | "19,6k2.03 = METHOD 1

Ih7,32 « 52.68 "19,589135 (i? 3 , Prihcipal Counter-Loan Net

| METHOD 2 (in §)

T

N A - Month 1: 20,000 Month 1: 20,000 C 20,000

. . -
’ .

™ The calculations can be quite tedious if performed interest +150 interest  +]50 B 0 - 150
one-by-one like this, and it is hard to see a4 pattern. ﬁiyme“t 200 payment, , -150 'EFP°§3“' 50 ~200
But . .+ . mathematics to the rescue! . The matter is simpli- ‘ Hogth 2: ']51950 Month 2; 20,000 . 50 19,950
fied substantially if whk resdrt to the foLlow1nthr1ck T interest +149162 || interest +150 “interest! 6.58 T +149.62
Let us imagine that -each month‘s payrfént M gqes first to gwhent ~200 ) y
pay off the interest. on-tHE principal _.as usual, but that ' ’

the rest-will be con51derea a counter- loan, instead of a

payment "-150 “aeposit” 50 -200

Month 3: 19,899.62 || Month 3: 20,000 : 100.38 19,899.62

reduction on the or1g1na1 p?lnc1pal Let us suppose further

M

.that this counter-loan earns interest at-the same rate as |

the principal. " The principal loan balance thus remalns\ . We can now, make the follow1ng algebraic generatlzatlon
ufichanged under this artifice, but in actuallty the bor- Let L be the original loan, M the monthly payment, and r the
rower's liability at any ®ime is the difference between mounthly interest rate. (We keep emphasizing monthly rate

the main loaq balance and tHe counter:loan, which is when we use it, because the federal Truth-in-Lending Law
equivalent to the amount calculated more "natugally" above. not only requires [in contracts, not math books] that all

By the'distributive law, the interest calculations yoald . . interest rates must be expressed in the form of an Annual .
bewequiVTlent: r(L -C)=rL-rC, i.e., the left-hand Percentage Rate (APR), but also vaguely suggests, that 1t 'is
side is the interest on the remaining balance as normally immoral or crooked to do otherwise!  We'll discuss this mat-
calculated,- whereas the riéht-hand side represents thelnet - ter mdre fully beloy.?

3

interest owed by Ehe borrower (the %}fference between the

"’ 2 v
Ut

’

Aruitoxt provided by Eic:
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The monthly interest due on the principal Ltis rL,
leaving (M-rL) to go into the counter-loan. ‘ This is the
"G" of our earlier work, So after.the nth payment, the
~value of the counter-loan is [(M-rL)/r][(1+r)n-ll, and the
actual balance due (B) is L minus the counter-loan:

t :
4) . B =1 + Ik M[(1+r) LA

i

., or B

4

L(1+r)" - ?f(1+r)“-11. .. .

- ! > . .
(In Formula (4), the expression, YL-M will normally be
negatlve, and it mlght seem more natural to write

" .., L- M-rL)/r . . ." However, the form given is !
. % .more suitable for use with a hané calculator.) A
This, formula can be used as it stands for two pur- -

poses. One is to find the actual balance due on ‘a loan

after n months of regular payment——wzthout calculating all
thefinte;hediate balances” For eXample, after 10 years or

120 months of payment or the loan used as ;an illustratioh
above, the remaining balance would be $10,324.37. (Here

again, the y* key on a hand calculator comes in handy for °
computing (1+0)" ) . : P . .

e -
n v «

Exercise 11: If ﬁonth]y-payment§ of $150 are made on_a $15,000 loan
at an annual percentage rate of 103, how much of the princjpal remains d

- after | year? 2 years? 5 years? 10 Years? 200 months? .

. - [

The Sther purpose 25 to find a "bglloon" payment—except
that this is reafly the same thing. (And a good thing, too,
that "balance" and "balloon" both-.begin w1th‘B') If you
agree to make payments on a loan for a. certaln perlod that
is insufficient to amortlze it (that is, pd&»lt off com-

- pletely), then a rather large sum may be due at the end of
the term agreed upon. For example, if the above logn had a

IQ-year,matu;ity, the balloon payment would be $10,324.37.

. ~ ‘ " /, 15
Qo e lH 'n‘
“ERIC - T

s
. bt . ~

f

‘ ®you're better off mak}ng the principal payment.)

©

<

Exercise 12, |f monthly payments of $70 are made on qﬁloan of $7,000
at an annual percentage rate of 9%,_and the entire baladce is die n

’

three years, what is the balloon payment?

)

A} ! ’ . hd ‘ v
There'are7ﬁ£{:;ous other uses of our formula for,the

>

) declining mortgaée balance. Let's thk at one more. Sup- ¢
\ )

pose that after 5 years of making $200 monthl} pay@;n{s‘on
that $20,000. loan & 9%, an extra $2,0001i;‘paid against

the principal —perhaps, for example, out of an ‘inheritance.
JWhat effect dees this have on the lbngth‘of the loan, the
future behavior of fthe décllnlng balance, and the total , -

1nterest p31d°

+ First, w% calculate the balance after 60 months
$l6 228.81. Then, we subtract the $2,000, so the pr1nc1pal -
.becomes $14,228.81. Now we simply start over with this as
our new L. From this point on', the loan will take 102
months: (8 years and 6 months) to amortlﬁg (The rule for

_determining this, as well as the original“length of thé

loan, is discussed below.) Since the-original loan would
have taken ‘15 years and 6 months to pay off, the'total

time has been shortened by 24 months (2 years), which-means
24 payments of $200—a considerable savings! - :

-

(Do not be misled, however: $2,000 has-been t1ed up
fer many years in order to achieve this saylng In fact
u51ng pur counter- loan techniques, we see clearly what is .
happenlng The sav1ngs of $4,800 is exactily equal to the
1nterest and. pr1nc1pal that would be generated over ‘the
rema1n1ng llfe of the loan bf a $2,000 bank account earn- *

. ing 9% interest. Or to put it another way, if 1nstead of

using that $2,000 as payment on principal, it were 1nve§ted
at 9% per year (compounded monthly), then it wogld.be *
e%aetly stiffidient to pay off the last 24 monthly loan

payments as they came due. If you can find a place to put
the‘$2,000 where it earns more'than 9%, you're better off

doing that and pocketing the difference. If you can't, .

16
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1t can be,

By modifying Formula (4) in certain ways,
put to other important usés.- Basically, what we can do 1s
éolve for any one of the variables in terms of, the others.

Suppose we want to know how long it will xake to amortize

a loan ¢ létely This means we want fhé loan balance to’
be zero, i JL.: [(M rL)/r][\1+r) - 1] = 0, or
L = [(M rLj/r][(1+r) - 1]‘ Notice the second form of thc
equat10n merely states that the counter-loan equals., the
original loan. We solve for n: ' - 2, ;
rL - n -~ " ’
o CLER A . . .
( (l*l)n,= ﬁ;%f + 1 ='M§%E, and so . ! .
“ ’ .
M v e o
10g M_—r-r 5 . ,

p

.

[N

-

‘ «they are th£ same.

A e :
' \

N -

Itis immaterial which base the logarithms are-as long as
The ratio of logs is always independent
Normally one would use e1ther commOn logs (base
10) or natural logs (base e). There is
u51ng natural ldﬁs—-when r is small,: as

of hase:
one advantage to

it usually will, be
1n‘pract1ce,,1n(;+r) is almest equal to é.
true id»anz other base. So

This is ’‘not

4

i%ln-—-b—’r C »I ¢ ‘ M i“‘

The quant1ty M/(M rL) is the rtatio of the" monthly
payment to the portlon of it that represents gain on pr1nc1- c
p3l after paying interest the first month This might be

called %the "Payback Ratio." We will fgfer to it as the PBR.

if our example, the PBR is 200/50 = 4. Tp .,
compute the amortizgtion period of this loan, we evajuate

tlog 4)/(log 403/400)vahd get 185.53, This means that in

18% months (or 15- 1A2,years) the loan is!paid off. ~

(6) . N

N

For instance,

L3
Y

. The last payment would not need to be a full one——that
is the significance of the fractional part~of this number .

J'To f1nd the exact amount of the f1na1 paymemt, compute the ¥
- rema1n1ng.ba1ance after- 185 months, u51ng Formula (4)

«*

Q
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Exercise &lo.

. . \ 4
.-$105.88. Add the interest on this, which ts $0.79, and you
have the flnal ‘payment, $106.67. » )

AN z M ’ = 7

Exercise 13.° For the Ioan of Exercise 11, find out how many months
- 0‘«

will be requuped to pay it off,,and what the amount of:the final pay-
ment will be# Do the ‘same ‘for the loan of Exeggide. 17 (assumlng it is

allowed .to run out to maturlty). , ) .

e

. : . ‘
/

Suppose you are planning a loan (L) and you know the
1nterest rane (r) and how long you wantethe loan repayment
to take (n). We can calculate the required monthly. payment
(M) &s follows: We still have

. M- rL o s

N N ’ ’
[E" r) 71] ' ) .
! * ]
We solve now for M: . A
o~
M = EL T ) e £ T I
(1+1)" s . (rem)™ - 1 .-
., ) , . . .
‘ L - > *
(7) M= L .o - .
) 1 - 1/(1+0)" - St ~ ) )

If you nged to borrow §50 000, if the |nterest rate is

g, and if the lender will amorflze over 25 years, find the required
monthly payment , . . : : “

- - . -

. .
v - IR . 2 ., PO . [}

on the other han% 1f the monthly payment (M) is
flxed and we want to know how muc

sw1ng given an irterest qate

solve for L instead ? T T R A
.E - —
. 1 . . .
® =M. L] . \
Tr (1+r)n . , /‘ )
. . - -

N ~ - F]
Exercise lﬁ If you have $250 per month to pay on a loan, if the 4
interest rate is 9-1/2%, _and if the lender will amortlze-over 30 i
years, how much can xod borrow? . ) *

. ‘T‘;—.‘ 18
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- - (3). how long he has to make them (n}.

[ A v Text Provided by ERIC

-

There are circumstances wheh a loan is given with
interest, but the specific{interest or interest rate is -
not éxplicitly provided, and sometimes the actual amount®
The 1lender
is considered paid off when a certain number {n) of

of the loan is not even made entirely clear.,

monthly payments (M) have been made. .

In saying th1s, we are tak1ng a very strict point of
view, looking closely at what people ‘are actually doing
rather than what they are say1ng 7 Rarely does anyone
intentionally not specify an interest rate, and usually
there is one floatTﬁg.around even if for possibly obscure
reasons. The lender may have one in mind and, based on it,
maf do some ,calculations that satisfy him as to what he
expects from the borrower. But, unless the lemder has been
. careful to do the calculations e%actly as we described them

above, his figure may bear little relation to the actual
- effective interest rate that the borrower is paying, and
thus, from a strictly mathematical point of vie@, the real

interest rate has never been made explicitly clear.

What we are going to look at, then, is the problem of
:calculating exactly what the effective rate (r) of interest
is when we are given: (1) how much the borrower actually’
gets (L); (2) how big his loan paymenty are (M); and '

“We will make our
computatlon without listening at all to what the lender did

to figure out which values Jf M and n will satisfy him.

.5 This is the kind of calculatiohfthat must be made in
order to‘comply with the' federal Truth in-Lending Law,

: since all intérest charges, however “the lender may--arrive
"“at them and -however he may think of them must be expressed
as though calculated in a standard manner, namely, the way
This is £alled "‘the actuar1a1 method:"
Moreover, when the actual eéffective rate of interest is

’

" we have done it.

finally determined, it must be stated in the form of an
Annual Pergentagé Rate (APR). This is 3o that people will
always see this 1mpeitant quantity - expressed in the same

f . 2/ ‘ -
2 N ’

units and thus will not be confused by having to compare

s

.numbers that really don't mean the same thing or measure <

in the standard way. '

. -
The formula for the equivalent monthly i‘erest rate-
is found by solving our familiar equation (Formulas (5),
(7),'9r (8)’ for r: . A

4
o M) 4 rLen)™ + M = 0.

It is easier to Solve for the:growth factor 1l+r, ‘so we

write :

.

CO-M(1+r)M 4 (Q4r - i)L(1+r)“ +

3
. . a

[]
(=3

or . CLen™ - ey (1) 0.

When X denotes the growth factor 1+r and a is the ratio
M/L, the equation becomes

M (1sa)x™ v 2 = 0.

|
Uhfortunately, though this is merely a polynomial of degree

n+1l, slich an equation in general cannot pe solved explicitly.

Some method of estimating roots would have to be used%® such |
as Newton's Method. o

Newton's Method is a clever device for turhing a guess
at the root of an equation into-a better guess By repeated-
come extremely close to the root—so close that, for all

The formula is a bit

|
|
|
ly using the method, it is possible, in just'a few steps, to
|
|
intents and purposes, we "have" it.
|

messy in this case, but with a hand calculator the arith-
¢

metic is reduced.to pushing a few buttons. e L. -
rl}et . . j
‘ka) :g;n+l -,(1¥a)xp +ar= a-&n(l+a-x). i
Then '~ La ) .

£(x) = [(n+1)x - n(l+a)la"" L,

*andfthe Newton s, Method formula for producing a better >
guess X' out of an original guess x is:

* l\J\J
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amorti%ation would :take 34 months.

" too high.

ERIC -

| T
’ -
. _gx' =X £(x)_ . X - o a - x"(1+a-x) -
* ! [(n+1)x - n(1+a)]x"

[hx - (n-1) (a+1)1x" - a

[(n+1)X - n(1+a)]x";! “u .
Let our first guess be l+a. Then °
x'"=1+ a - ——fL—H;, .
. (1+a)” Y N

which shggests that ~

-t -1
- (1+2)?”

We cduld apply the method again using this value for x'and

B

calculate a new x'. At this point it is easier to do

numerically than algebraically. o

In many cases it is just ‘as easy to guess: values of r
and see how close they come. By repeated guessing we may
be able to come very close to the true value of r. Let us
look at:an éxamﬁle:
and carry $3,000. Suppoéévyou make 30 monthly payments of
$200, a total of §6,000. Hov
M= 200, L = {,dbo, and our first guess might be that
T = 5.7% per month (or 68.5% per year), based on the first

approx1mat10n obtained by Newtnn\f Method above.

Suppose you buy a car for $2,000 down

How much was the interest? Here,

We can
L]

easily check how ¢lose we came. Let's use Formula (5) to
figure how many monthly payments of $200 would be required
toamortize a $3,000 loan at 5.7% per ‘month. Then

TL = 171.15, M-rL = 28.85, the PBR is 6.93, and the

Since, in fact, the lcan
is’'paid off in 30 months, this trial intéTest rate must be
If we try 1 =

5% per month, the .loan is amor- .

tized in 28.4 months. Thus this figure is too low, and

the correct figure apparently is somewhere between 5% and
5.7%. On the basis of lingar 1nterpolat10n, we might

figyre that 30 is about;30% of the way from 28.4 to 34, so

perhaps next we should try guessing a value of r that is

110 -

21

. fishy].

Exercise 17.

Exercise 18.

about 30% of the -way from § to 5. 7 about 5.2%.
With a hand calculator-it would not take long to find

i.e.,

T correct to the hundredths place by repeated trial and,

error of this sort.

P,

Exércise 16,

A used-car dealer tells a customer the following:

'"We'll sell you thls car for $600. You pay $100 down and we'll

So the loan will be §500

[Note the Truth-in-tending jar- -

gon creeping in.] . , \ \
""Now, 4% of §200 is $70" [watch him carefully] so you'll owe us

carry the rest af IQZ interest for one year.

at an Annual Percentage Rate of‘lﬁZ.

a total of $570 at the end of Ehe‘year [here's where it starts to get
You pay us back in 12 equal monthly installments of
570/12 =

entire year even thoudh you're not keeping the whole ambunt the entire

$hL7. 50." (You're paying interest on the whole amountgfor the
year. This ,calculation would be perfectly correct if you were only
required to make one payment of $570 at the year's qnd.)

Calculate the effective APR this custorler would be paying.

""We'll
You pay $100 dotn and we‘ll carry the
Now, 14% of $500 is $70, so we'll

take our $70 now [here's where.he dlverges from his neughbor], apd you

The used-car dealer next door arguesﬁas follows :
sell you thjs car for $600.

rest at 14% |nterest for one year.

can pay us the $500 back in:12 equal;monthly tnstallments of
500/12 =

taken out before the loan starts.)

$41.67." (This is called “Front- end interest," because it is

The customer actually has to pay

. this dealer .$170 | now (SIOO ""down'" and $70 “lnterest“) S0 he's really

getting a loan of only $h30. No wonde: the payméhts are lower!

-

Calculate the effective APR this customér would be paiing

The cus tomer above says he has only $100 to pay ndw, so

he/ s got to borrow the full $500 even if it costs him more. The

'deéler says 0K he'll settle for $100 now plus 12 equal monthly pay-

ments of $41.67 timee 500/430 (or $48.45):
by the #atjo 500.to 430, so should ‘the ﬁonthly payments.

since the loan has increased

Calculate "the effective APR this-customer would be paying.

1
’
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Exercise 19.

A lender makes a 'hominel" loan of $|0,060 at a
"nominar" APR of 10%.
bor;ower actually-rece:Ve$ only $9,000.

_But he charges a "loan fee" of $1,000, so the *
Yet his repayment schedule

is as - though based on the nominal value of the loan.

(a) Calculate wa,long he would have to pay $150 per mofith to
pay off a $10,000 loan".

will have to pay to meet.the lender"s terms.)
*

in order to satisfy a

(This actually is how long he

(b) Calculate his effective APR- i f,
“$9,000 loan, he paid $150 per month for the number of

-

months calculated above.
‘ [

a

7

Another use of this technique for finding an ef{ective
annual percehtege :ate"which is closely related to Exer-
cise 19.above, is to compute the effective. y1e1d of a
discouwpted note. Sometimes an investor who holds a note
as security zn a loan finds that he needs the money and
must éell the note to another investor. To "sweeten the
pot" and imduce another investor to buy his note, he may
seil it at a discount, s
actual balance due ati that tige.

nally accepts a note from a boJrower as security for a .

-that is, he may dccept less than the
Or, when a lender origi-

loan, he may require that the borrower pay a certain fee.
This results in the borrower actually receiving less of .a
Iéan:than the face value of the note,

What may complicate both of these situations is that
the note may require full repayment prior to amortization,
so there would be a substantial balloon payment.

Suppose, for example, thag the loan in Exercise 19
myst be repaid after three years. We can use Formula 4
to calculate the nominal balance after 36 months of paying
$150 pe} month ‘pn a nom?nal loan of $10;000 at a nominal
annual percentage rate of 10%. In this case, L = 10,000,
1/120M = 150, and’n =
the actual balloon payment due.

was only $9,000,

r=
But reme@Ber that the loan

so the effective annual percentage rate
) 23
TN

4 r .

C

36, so the balance is $7,214.59,

.

4

-

\‘

use the
trial and error method to find it. ¥ 000,

M= 150, n = and cal-
culate the balance by (4), trying to get as near as
possible to $7,214.59: -

Let us
We take L
36, with various trial values of r,

.must have been somewhat higher: than 10%.

_When

-
.39—too low °
$§6,703.50—still towo low
$§7,001.01—still a bit low
$7,214.99—very close!

r = 12%, balance due is $6,415
= 13%, !
= 14%,
} = 14.7%, V.,

’

- So, 14.7% is the &ffective annual percentage rate

that is actually paid by "the borrower and actually,

‘e

A borrower wants an actual $18,000, and is willing to
What

received by the lender.

Exércise 20.

pay @ nominal 10% annual percentige rate, and a 20% discount.

' would be the nominal or face value of the loan? FinJ the effective

anpual percentage rate if the Ioan is paid back in full at the end of:

one year; two years; and five - years Assumgve monthly payment of IZ

. of the nominal value of the loan.

.rate is taken without discount hy an investor.

The face value of-a gpeé/{s $5,500, and the nominal

annual percentage rate is 10%.

Exerc{se 21.
Assume the borrower“Pays a discount of
10%, but that a loan broker takes 2% and leaves.8z for the lender.

‘ a£ actual amount does the borrower get? What actual amount does the
lender- put up? Assuming a monthly repayment of $55, carried on for
two years uniil a balloon payment is due, find the balloon paymeﬁt,

and the effective annual percentage rates for both-borrower and lender

“ (they will bé different):

Exercise 22. A three-year note for $11,500 at_8%-annual percentage

He receives monthly .
payments of $115 for. two years, then sells the note at a 10% discount
(off its current value). How much does he get? What has been his
effective annual percentage rate of return? Wha} is_the ballon pay- .

»

ment when thegnote is paid off after another year? What is the note

‘buyer's effective annual percentage rate of return? .
- . 4
19
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CONTINUOUS APPROXIMATION -

-

Anyone who has looked at a table of -declining

balances to find a patterﬂ has probably been perplexed,

the balance declines slowly at first,

more rapidly.

the loans we have been studying!

For example,

. . "

but, nonetheless, has undoubtedly noticed at least that
and then more and
here is what happens to one of

| Initial Balance: $20/000.00 -

Paid in first yeaf: $/ 625.37 1teaving $19,374.63 due
second year: 684.04 18,690.59

. third year: — 748.21 17,942.38
fourth year: 818.40 v 17,123.98 y
fifth year: 895.17 1 16,228.81 .
sixth year:' 9%9.]3 - //v 15,%&?.68

' seventh year: .1,070.99 14,178.69
eighth year: 1,171.45 13,007.24

S ninth year: 1,281.33 11,725.91

N tenth Year: 1,401.54 ¢ 10,324.37
For readers who know calculus, we can make ghese
observations more quantltathe by the following device:

Let B(t) be the declining balance.
in steps of course, namely M-rB per month. But

- suppose it declines continuously at the monthly

It actually decreases

let us
rate of

M-TB. 'This is approximately accurate.
the equation . -

We hgve, then,

) %% = -(M-rB) or g% - rB = -M.,

If we multiply both sides by. e , we obtain °

-t dB _ _-rt_, _ . -Tt
e I e rB = -Me .

s

This step may seem unmotivated, but.,it has the advantage

of turning thesleft-hand side into the exact derivative
of the product of .the functlons B(t) and e Tt This may
be checked by the well- known p%oduct.rule of calculus. “2e ¢

. ' 11 1 ‘

-rt . . ©

a

So, whatever B(t) may Be, at least we know that
(Be™TY)' = -Me'Tt. | Thus,

c v

-rt M -rt -
Be = ?e + c’ . -~
- ~ ¥
and so ‘ . N -
B=Mycert o (-
¢ %

The C is a constant introduced in takihgwthe aneidefiyatiye.
It can be evaluated by letting t =
tion that B(0) is L, The equation

M/r + C. L - M/r, and, at last,
we obtain § . R

3

0, and using the dbserva-
the initial loan.

becomes L = Hence, C =

H)ert, or .
T

Be) =¥+ -

- (- .o
, B(t) = g(l" M-rL eIt .
We see, then, that B is experiencing exponential

growth down away from the value M/r. .Note that the pay-
back ratfio (inverted) appears in this formula, as the

coe£f1c1ent of the exponential. -We can graph B(t):

M2 )
e I e
x / / !
/)1 i
" 1 B(t
. _— (t)
2’ .
/ - » {
f R
! time t""-.,\'

The value marked t, where B(t) crosses the time axis and’

van1shes; is the time it takes td amortize L. This will
. occur’ whén B(t) = 0, i.e., when e is equal, to the payback
“ratio, or tvﬂ,(l/r)lnPBRk Interestingly, this was the ]

apprOX1mat1dh we 0bt31n§# in an earlier section, Formula (6).

- o

. .26
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T, . PRESENT VALUE OF FUTURE PAYMENTS\

Yy <

Sdppose you sell your car today for $1,000, but the

buyer asks you to accept payment *n & year. This amounts
to your gIv1ng him a loan of :§1,000 ,for one year. He

" should pay interest te you at the prevailing rate,

versely, if he does not,

> $1,000 for your car:

that would grow td ‘'$1,000 in one year at the prevailing

- Anterest rate.

Con-
then you aren't really getting
you!' re gett1ng whatever: amount it is
Think of this another way.g Suppose the
buyer signs a note agreeing to pay §l,000 in a year— ~
what would the note be worth noy if'yod tried to sell it?
You would have to sell it at a "discount" in order to
induce someone else to buy it, f |
other party would expect to make some profit during the
year he's golng to tie/up his mepey, *

To find out exactly what &l,OOO-oneiyear-prm-now
is worth today, let's reasbn as follows: - If r is the pre-
yailing'interest rate, and an ameunt A is invested today,

it would grow to Ae’
TA must be $1,000e"T
expectea in t yearé, it is worth Pe
is discounted -by the factor e “Ft- .to account for the for-

feitgd interest in’ t}? meantime. ’ -~

in .one year.

More generally, if a payment P- is

-rt

today. The payment

«

Exercise 23. Suppose a forest could be cut down now_ and a profit _
realized of $3,000 per acre; or, it could be allowed to grow fbr five
years and then harvested at a;ﬁgﬁfit of $5 000 per acre. whtch is
better? Try discount rates of 10% and IZZ. ‘

R ‘ 2" d N

# v

4

If there are several payments involved at dlfferent
times, say Pk'ht time tys "then the present value of these

4 S T,

is

A ‘ (R

.- ER “
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for after all the -

For this to equal ‘$1,000,

'I(,tk’f')Atke-I:tk*,

. : . -
and’ the
say at intervals o£ T, so

Supposé the payments P, are 11 equ@l say to Pb
payments are equally spaced,
that tk = kT.

nitely.

Assume they start now-and continue 1ndef1-‘ ‘-
The formula above becomes .

R .

which is- a geometric series and sums to P/(l-e'rt).

p ; (e-rt)k . ~

"X
-

Exercise 24. ?uppose,you,win a sweepstakes amd are offered your
choice of the following prize options: . )
{a) $100,000 now; . £ .
) (b) $50 000 -now plus $250 per month for kae, . -
-(c) $500 per*month for 1ife. - %1 N

*  Calculate the present value of each of these, and determine
which is best. Assume you will live a ''long time,'" and make thg cal-
Try both r = 5% and r, = 6%

(Ignore all income tax consequences.)

culations as though you will live forever.

as the prevailing interest rate.’

There is yet another method for treating this %ind qf
problem if the payments are_made more or less continuously—
as, for example, income from a business:\revenue from a toll
faciltity, etc. Th#s method requires concepts from the =

integral calculus. Let the function I(t) represent the rate

'%5 receipt of income at timé t over an interval from time a

to time b in the future. ,ALet [a,p] be part1t10ned 1nto a

. large nupber n of small 1ntervals of Mength oty and® let

I(tk*) -be the‘1ncome rate at a typical time tk* in the kth
‘subinterVal, Then I(tk*)Atk is approximately the ihcome.
earned -in the kth subinterval, its present value'is
and the sum L
E ' \ rt
- I(t *)ht, e "7k
k=1 kK

¢ 3

is an’approximation to the present value'of this anticipated

income. Since, as the partition becomes' finer and finer, it
is a ‘better and better approximation, the integral 28
117 . -
- - .
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. b
I I(t)e” rtdt must Q\_the exact present value of the
Y
ant1c1pated income from I(t). If income-is anticipated
from the immediate present into the indefinite future, the

improper integral f:l(t)e-r

tae gives the desired value.

» The
function so oRtained from any given income function I(t)

(Note that this quantity-is a function of r.

ig“generallx known as the Laplace Transform of I(t), and
is widely studied in engineering and applied mathematics.)

it'is projected that a shoe
store will make a net profit of $1,000 per month,
n1te1y. Thus, I(t) = 12,000,
present value of this shoe store is- 12 000e Ttat 12,000/
At 10% dlscount then, 1t would be traded fairly at $120,000.
Conversely, if the asklng‘prlce’was $200,000, this would

imply a discount rafe of .6%.
]

Suppose, for example,
indefi-

if t is in years. The

f

Eal

_Exercise 25. A proposed hydroelectrlc power plant will cost
550 000,000 to build.

w:ll generate revenue after t years is $1, 000 000 /T per year? Note

Is it worth building |f the rate at which it

the revenue rate will contnnue to increase |ndef|nltely, starting at O,

.

but |ts rate of increase wjll gradually slow down. Assume r = 6. 75%.

-

- (Sorution of this exercise requires knowlédge of the gamma function.)

1f there are lump sum payments superimposed upon a
o cont1nuou§,flow of 1ngome then the best technique for rep- '
resenting the present value of these future _payments is an '
advanced mathematical construction known as the Riemanf-

Stieltjes integral. o

Whether a sum or an integral is-more appropriate to
measure the present value of future income, discounting
future payments - in- this way is a standard concept in con-
temporary economdic theory. For example, in examining the
wisdom of waiting another year for a cow to get,fétter before
it is butchered,

larger before it is sawed down,

~

or waiting a decade for a forest to grow

' it is unreasonable to com-
pare,the respective profits now and }ater as if dollars
1 N a

now and later are ,equivalent. Of course the profit will be

‘\} ‘ 7. 31- 29
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nominally increased by waiting. But the{hatzer becomes
more realistic Tand more interesting) if the delayed.
profit is discounted before belng compared to’ the present
profit, as illustrated above.

.

It is important‘to give careful thought to the value
of r in the discounting formula.

~

e
It should realistically represent the
value of doing without the mohey for a while.

The exercises have sho
how critical dec1sions may sometimes bé reversed dependi
on the value of r.
This is not
a mathematical matter, but it does have obvious mathemati-
cal consequences. It could be taken simply as the“value of

1nflat10n—-even the most conservative investor would at

o
.

least expect his buying power to be restored after .the
It could be taken as the current interest
rate paid by savings and loans, or the current cost of

. 0Or it could be taken to be the
interest you expect to receive from your investment program—
which could be quite high,
might,

waiting ‘period.
borrowing prime money.

You
for example, take it to be the return rate calculated
in the section below on the optimal time to hold an

.

if you're a shrewd investor!

investment.

The di ounting formula can be just as useful to the
person paying as to the persom being paid. the
two parties to a transactipn may have good reasons for

However,

using different discount ratés, and therefore they might
\\\\;szer as to the trpé 'cost" of postponlng a payment.
J

tually, ‘it's prrobably a good thing they differ, just as
it's good that people place different "utility" values on
varlous combinations of commodltles——lt's pr1mar11y this
dlfference that makes trade possible, for each side can
thlnk it's getting a good deal from\the,same transaction.

For example take the shoe store discussed above. If
a buyer discounted future income at 10% and a seller only
at 6%,.the buyer would be Willing to pay $200,000, while
‘the seller would settle for $120,000. Thus they ‘each would
t?lnk that a price of, say, $150,900 for the business w3530
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..
fantastic, since. it represents a compromise discount rate
of 8%. ~

8. LEVERAGE

~

- .

L]
Most investors in real estate take advantage of the

willingness of lending institutions to loan mongy gener-
ously against real-estate investments. The general ska-
bility ofl the real-estate market makes leﬁding institutions
relatively confident that thei4 money will*b; safe, so they
are willing to loan high fractions of the.plGrchase price at
relatively low intergest ;afes. Thus, most investors .
When

there is an appreciation in value of the property, however,

actually own a rather low equity in their property.

it all belongs to the investor, and this fact causes a
Let-us
Suppose an investor buys a $50,000 property

surprising magnificagion in the ratquf growth.
illustrate:
with $10,000 down (his own money) and the balance of
$40,000" financed (borrowed). Now, let's say in a year the
so it is worth $55,000. The

still owes (roughly) $40 000, byt now his equity is
In one year his §$10, 000 turned into $15,000. This
increase, five times® the rate of increase of the

property appreciates 10%,
investor
$15,000°
is a 50%
property. The factor five is directly related to the amount
of his banklloan—;he bought a property worth fives fimes as

much as his own investment.

.

This phenomenon—the magnifica-

‘tion of growth rates through borrowing—is known as leverage.

. The general formula is as follows: If you have put up 1/n
of the money yourself and borrowed’ the rest, and if the
holding appreciates by a fa&;or of r, then your investment

has appreciated by a factor of nr.

We are ignoring the obvious fact that an investor who

- borrows $40,000 has to make pretty hefty payments to the
lender on this loan, most of which wil{ be interest (if, as
But,
assume that the property under discussion .generates income
© (e.g.,

'usual, the loan is amortized over 30 years). if we

an _apartment hpuse, an+office building), then, 31 °
Q Gy . .
ERIC 12 \ . ‘
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roughly speaking, we can presume that the income will be

enough o balance all the expenses including debt service.

.

The leverage principle actually applies to all invest-
ments, not just real estate, but it is of greatest ~
significance in real estate due to the generally large

values of n,’as compared to the stock market, for example.

9. THE OPTIMAL TIME TO SELL . -

1
%

In the preceding example, the 50% increase ifi the:
P

investor's funds is, so to speak, "too good to last." His
equ1ty after one year is a much higher
was 1n1tlally $15,000 out of $55,000,

$10,000 out of $50,000—and during the
leverage is correspondingly lower. If

10% more to $60,500 during the second year, his equ1ty

pegcentage ghan it

as opposed_ to* A
second year his

the property goes up

increases to $20,500. Thus, during the next year his
equity goes only from $15,000 to $20,500,
37$—still very nice, of course, but not what it was.

an increase of

: As
his equity continues to go up over the course of time @hich
is what he desire#, after all), his leverage will continue
to decline, and pércent@gewi§e his investment will'not be
as-good

It might be suggested that after the second year he
shéuld sell his proﬁgrty and buy somethlng more valuable.
After all, with banks evidently willing to finance 80%’{
and with $20,500 for a down paymentg ‘he ‘could-buy a  *
$102,500- properthy Clearly, he is better off with the -
profits from the appreciation of a 5101‘500 property

instead of a $60,500 one. ] : T

.

But if selling after two years is a good 1dea because
of the’fact that his leveragq, which has falleh’ £ low, can .

-~

be restored, perhaps’ se111ng after one year would ‘be an -,’,/ '

even better -idea. After one year, he couId realize 515‘000
on selling hlS property (aboVe the mortgage),lwhlch as. a
down payment on_ a second 1nvestment would permlt hlm,xo -buy
into a $75,0QO proper;y' After ;another year this would .

q - - o ,
pays

.
- P -
‘\\_A S o

3




appfec1ate to $82,500 and he would have a gain of $22 500,

a good $2,000 better than before. If he wishes, he could

novw sell again and buy into a $112,500 property_as a -third

2 But again,

investment.
if selling after one year is such a good
idea, 'why not sell every:.six months when the average

leverage is even higher?

Or every month, or:every day, or
= .

every minute?!
)

A graph can illustrate what is happening. "The figure

below shows the investor's leverage (ratio of the property's

s

.

}

\
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value to his equity) as a function of time: . ¢
. 5 .
5
L(t) = -
e 11/3 5 - ‘i(].l) t

N,.....!._--...-..
[

Since this curve is decreasing as the property appreciates,

clearly the sooner the investment is sold, the higher

e

his aqverage leverage.
»

-

If one'bu;hes this reasoning to its logical extreme,
it suggests buying and selling property every 1nstant It
also suiﬁests very clearly that there is an important fac-
tor wé have not as yet taken into account:
of buying and selling. Every t1me a property is bought or
sold there are sub;tantlal costs,

the “4ctual costs

such as title insurance,

agent's feés, etc” These will place a lower 1limit on the

length of time 1t is realistic to hold an investment.

.Let us make a theoret1ca1 calculation of the optimal

length of time to hold an~investment. This will be, good

practice in mathematlcal modeling, too—and in understanding

33
09
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e

its limitations! We will have to make some 51mp11fy1ng
aSsumpthﬂS in order to. make the calculations tractable.
Unfortunagely,' these assumptions also cast some doubt on
the validity of the conclusions.. They ‘'would be’limited
to say the geast But on some brlght day, when you are
feeling adventuresome, you can try complicating the model

to make it moré realistic! at least we'll
have some. ballpark guesses as to the most prudent course

for an investor to follow. v

In the meantime,

In buying a property there are certain costs of
acqu151t10n known collectively as "closing costs“——bank
fees, title insurance, etc. To preserve generallty, let's
say they are ¢ times the purchase price.

are also costs,

In. selling, there
.largely the agent's fee. ‘Let's say the
selllng COStS are f times the selling price. ’

,There are also certain continuing costs of maintaining
ownershlp of a property, largely the cost of debt service
(i.e., interest on the loan), but also taxes,
'maintenance

insurance,
but it is

reasonable to assumé that there is income from the property
to mitigate these,

etc. These can be substantial,

and not unreasonable to hypothe51ze, for -
the sake of convenlence that this income is exactly suf-
ficient to balance the costs of ownership. Thus, our profit
‘on the 1nvestment will derive exclusively from the apprecia-
tiaqn, and be d1m1n15hed only by the buying and selling costs.
There are also tax consequences of both ownership. and sale

of a property, but we will ignore these,

in this analysis.

too, for simplicity

(Incidenfélly, we are alseo neglecting ’

v any gain associated’ w1th repaying the mortgage during the
period of ownershlp ~but this is normally very small,

especially over the initial period of a 30- -year loan.)

Let us suppose we have an amount I to invest gﬁd we _
f1nd -a bank willing to finance all but 1/n of the purchase
price P of a property., and
) , Thus,
n(I-cP), that is, n times
what we have available after a%itxfng for closing costs.

' &L

The closing costs will be cP,
*we have available I-cP for the actual down payment.
wp.canobuy a property worth P =

34




.
We solve for P and find P = nI/(l;cn)@' Now we know what

we can afford to buy with the available mone;. =

. ° Next, let us assume that the property continuously
appreciates at the rate of r per year.
worth peft

In t years it is

If it is sold at this point, we pay fPert in
commissions and other costs of divestiture, and we pay off
the bank mortgage, which 4is still pretty close to P(1-1/n),
its original value} We have left

pe™t . fpe™t - P(1-1/n) = ——[(1-f)ne’ t-(n-1)].

T +cn + cn
To find our gain per dollar, that is, our investment gain

ratio, weydivide by the input I, obtaining -

9) (-f)ne’™™ - (n-1)

1.+ ¢cn

I
It took t years to produce this gain. At a- ﬂniform
rate of increase of x per year, the growth factor in t years

would have been etx, as shown earlier. What is the value of

" x to wh1ch our gain is equivalent? ‘
' . eXt \(1 f)ne - {(n- 1)
(10) I+ cn.
S "l (1-f)ne’t - (n-1)°
’ 1+ cn :

R ~
- ° .

This x is a funétion of t %nd it is our goal to maXimize it—
that is, we sell at such a time that our average rate of

gain _is as large as possible. So we compute dx/dt and set it

to 0: . )
1 (1-f)rne’t L - ne™ L @-1) | 0
‘ ° ) t (11§)nert - (n-1) . ZT T +cn
or (ﬂ f)rtne = 1n lLf)Pe — cn‘tnAAl

(1 f‘)’nert - (n-1)

t

Al
This, needless to say, ,is a mess.

To facilitate solving
this equation, let us introduce the symbol y for (1- f)ne ,
so that rt ='1In x!n(l-f).

Q

ERIC -

A ruitox providea oy enic

Let us also set w =y - (n-1).

s

B by S

. » .

. .%4

.

With this notation, the. condition becomes
LY
)

xln n(l« =1 w i
W M T+ .
i .
or yl(ln y -.1n n(1-f)] = wlln w - 1n(l+cn)].

There is ;o\hope of solving this equation analytically.
However, the following technique is useful for approximating
solutions. ‘

Let ¢, f, and a have actual values; for example,
c = b.OS f = 0.06, and n = 5 are reasonable. Thus,
1n n(1-f) = 1.5476, 1n(l+cn) = 0.13976, and w =y - 4, Then
make a .table for various values of both y(In y - 1.5476) and
w(ln w - 0.139761n and see where the former at some y 1is
equal to the %atter at a w that is 4 less.

With these. numbers it turns out that y ¥ 6.85. Thus,
0.3766. Or if-ycu let n = 4, then y & 5.70 and
0.4160. Now yeu merely plug in the actual average rate
of appreciation and solve for t.
rized in the table below:

H

rt
rt

H

Some examples are summa-

“ n=5 (80%’financing) n =4 (75% financing)

= = 0.10 t = 3 years, 9 mos. fE = 4 years, 2 mos.
0.12 . 3 years, 2 mos. 3 years, 6 mos.

0.14 - 2 years, 8 mos. 3 yeers, 0 mes.

‘ 0.16 2 years, 4 mos. 2 years, 7 mos.

~~- It is interesting to note that the parameters fix only

the product rt. Since the growth factor is ert, it appears

-that the optimal time to sell is when the growth fgctor
{ reaches a certain value, irrespective of how long it takes

or what the appropriate appreciation rate is.
rt

The value of
at the "rifht moment" is y/n(1-f), and by Formula (9), ~

tgf gain per dollar invested is then
g . -

. ) ;n't ) . ., . .
1 + c¢cn : . .
% - L[]
«y = : ’ y
i -~ 36
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. (a) t = 1/5, yields r = 20%

-

7/

From‘Formula{(lO) the effective annual percentage rate is
one less  than the ttM root of this, where t is the optimal °,
length of time to keep the investment. -

If you sell before these values have beeﬂ reaghed, you
make. less profit and, mord to the point, your average earn-
ing rate is 15%5; if you sell after these values have been
reached, you make more profit, but it takes longer and, it
turps out, your average rate of earning is again less.

For the data above; if n = 5, the growth factor of the
property at the optimal time to sell is 1.46, and each dol-
lar invested will grow to $2.48. The .effective annual
percentage rates are, respectively, 27.4%, '33.2%, 40.6%,
and 47.6%. If n = 4, the g}owth factor is 1.52 and each °©
dollar will grow to.$2.41. The effective annual percentage
rates are 23.5%, 28.;%, 3471%, and 40.6%, respectively.

-

' 3

10." "SOLUTIONS TO EXERCISES

§

1. 9% = .09 = 9/100. The monthly rate is 3/4 of 1% or .75% or .0075 «
or 9/1200 or 3/400. The interest for 4 months is $7.50 x 4 = $30;
for 5 years it is $450. The growth factors are, res;ectively.

1.030 and I.hSO; (Note that $1,000, the actual amount of the loan,
is only required for the computations of the actual interests in

dollars.)
2. Using P(1+r/t)"" with P = 5,000, r = 0.08, n = 5, and

(a) t=1/5 (oﬁce in 5 years is-1/5 times per year), we get $7,000
(b) t =1, we get $7,36.64 )

(c) "t = b, we get $7,429.73

(d) t = 1825, we gét $7.449.21° .

(e) t = 2,688,000, beyond my calculator! )

o

3. We know 5000(1+r/t)5t = 10,000, or (1+r/t)5 = 2. Using various

_ . values of t, we solve for r:. . - o

(5) t=1, yields rv= 14,87%
() t = 1825, yields r = 13.87%
) 37

®.

13.

14,

16,

Using Pe"t with p = 1,200, r = 0.05, and t = 20, we Eave $34§61.9h,

. Using P =5,000, r = 0.08, and t = 5, we get $7,459.12 for Exercise

2. For Exercise 3, we want 5000e°" = 10,000, or r = 1/51n2 = 13.863.

’

Using P

100,000, r = 0.12, t = 2, we get $127,124.90 .

40,000e3% = 60,000, s0 e3F = 1.5, 3r = In1.5, r = 13.52%. In
each year it appreciated by a factor of e0-1352 = 1.1447, so the
increase is lu.uxz. Note that 1.1447 is also the cube (3 years)

root of 1.5 (the 3-year growth factor).
7.2 years (72 : 10) ]

18% (72 : &)

’

With G = 100, r = 0.05/12, and n = 30 (the number |of months in

2 1/2 years), we’get $3f188440.

L = 15,000, M =150, r =5/600=1/120 (this is 5/6 of 1%), so

when n = 12,| $14,685.87 remains;
when n = 24, $14,338.84 remains;
when n = 60, $13,064.11 remains;
when’n = 120, $9,879.00 remains; and
when n = 200, $2,226.23 remains.

L=7,000,.M=70, r=3/400, n =36, so $6,279.83 remains.
Note this is most of the original 1oan. It would take over 15

years to pay off this loan completely at the given rate.

(%) 216 months (or 18 years). In 215 months the balance (by
‘ (Formula (4) is $14,864.73, leaving $135.27 to pay; allowiné
for interest over the final month, the last payment i $136.40.

N\

(b) 186 months. 1n 185 months the balance is $6,962.94, leaving
$37.06 to pay; calculating interest, the final payment is

$37.34. °

I3

L =50,000,§ r=11/1200, n = 300, so M = $490.06.

M =250, r=9.5/1200, n =360, soL = $29,731.58 (approximately

be only 15¢). . Sgef

15.
_—’///////<<$29,7§0; the nnﬁiﬁiy Bayment for, that additional $20 or sa would

L =500, M=147.50, n=12, so r = 24.9%. This was obtained by
trying various guesses in Formula zh), attempting always to get-as

close to $01£§ possible. For examﬁle, the guess r = 20% leads to

.12y
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a final-balance of ~$15.57, so the interest is higher; the

17. .

18.

19.

©20.

\

Q

ERIC

Aruitoxt provided by Eic:

and r = 1/120).

. . §

guess r = 213 produces -$12.40; we moved closer by about $3

and need to move $12 more; so next, guess r = 25%, this produces
3Ic, so it's slightly too high; r = 24.9% produces 3¢, which is

plenty close enough! ) .

L= 430, M=41.,67,
method, r =

n =12, and using the trial and error
28.8%. This deafer is thus’charging somewhat more

interest on his loans.

L=500, M=

Since all the

48.45,

figures are proportlonal, it is reasonable that the

n =12, so usung Formala (4), r = 28.82.

Enterest rate should be the same as ‘in Exercide 17.

. (a) Using Formula (5), with M = #50, r = 5/600 = 1/120, -and
. L=10,000, we find n = 98 months {actually 97.72)°
(b) By trying various values of r in the same.forﬁala, with

M =150, L =-9,000, we ¢alculate various corresponding
values of n and try to get close to 98.

r= 12, we find n = 92;

For example, when

r=13, n = 97.43; i

r=13.1, n = 98.02; and .
Sl .

r=13.05, n = 97.72. .

Thus, the borrower is paying at the effective annual per-
.centage rate of 13.05% for the use of the $9,000 he actually

received.

We want to know what amount $18,000 is 80% of, so we_ solve
0.80x = 18,000 and find x = 18,000/0. 8 = $22,500.
the amount of the loan, and the monthly payment were $225 (which

is 13 of the face value), then after one year, the balance would

be $22,028.80 (using Formula (4) with L = 22,500, M = 225, n = 12,
Note this is higher than'the'actual loan ($18,000),
which meani the monthly payment‘of $225 is \nsufficient even, to pay

If this were

the jnterest, and thus the principal is actually growing larger
As

before, we search for the effective annual percentage rate (r) by

rather than smaller. Our formulas all apply, nonetheless.

trial and error. With L = 18,000, M & 225, n = 12, and using
Formula (4): | 1 ey . .
~ S . 39

21.

»

for r = 15, balance is $18,000.00, not high enough, the princjpal
stays level; 1
r=16, $18,193.80, way too low; .
r=20, $18,987.25, still a lot low;
r = 30, " $21,103.98, still over $800- low; .
r = 34, $22,006.62, very close;
r = 34,1, $22,629.6|, virtually exact.

For 2 yearé,‘the balloon would b; $2|§508.26, and the effec-
tive annual percentage rata would be 22.8%.-

For 5 years, the balloon would be $19,596.16, and the APR
would be 16.2%. Note ‘then, that the discount has substantially
more effect when the loan is repaid quickly.

This is reasonable,

*‘since it is a one~time charge, and its effect on the interest rate

is lessened when it is averaged over longer periods.

The lender
The broker gets the

The borrower gets $4,950, which is $5,500 less 10%.
puts up $5,060, which is $5,500 less 8%.

difference, which is 2% or $110. From Foihula_(h), with L = 5,500,
M =55, r=1/120,-and n = 2k: the balloon is $5,257.57.
For the borrawef, we seek an r such that L'= 4 ,950, M =55,
n = 24, and the balloon is $5,257. 57 * By tr:al and error, when
r= 162, the balloon is $S 259 73. . *
For the Iender, we seek an r such that L = 5, 060 M= 55,
'n = 24, and the balloon is $5, 257 57. By trial and erroty. when
r = 14.75%, the balloon is $5,259.46.

= 8/1200 = 1/150, and n = 24}
The sale price agreed upon is 90%

By (4), \(hth L z 11,500, M =115, r
the current value is $10, 505 91.
of this, or $9,455, 32 By trial and error, we seek r such that

with L = 11,500, M= 115, n = 2b4, the Jbalance wnll be $9,455.32,
When r = 3.4%, the balance is $9.456. 32

investor.

SN

Not too good for this
But the other one should de correspondingiy better.
The baleon after three ;ears is $9,946.16, using (4), wi th
L =11,500, "M =115, n =36, and r = 1/150, So the secénd in- .
vestor paid $9,455.32, recéived 12 monthly‘payments of $115, and -
then got $9,946.16 back.

per month was insufficient to pay interest.

The principal was growing, so the $115
Here, L = 9,455.32,

M=115, n=12; b; guessing, r = 19.4% yields a ballo*of
$9,952.30¢ R 40
. l_fa ‘ .
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Problem No.
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6. Were any of the followi_g,p;;ts of the unit particularly helpful7 (Check as many
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Name Unit No. Date
Institution ' ’ " Course No.
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-

1. How useful was the amount of detail in the unit? l

Not, enough detail ta understand the unit

Unit would have been clearer with more detail

Kppropriate amount of detail - .

Unit was occasionally too detailed, but thi 8 not distracting

Too much detailly I was often distracted E

I
Ty

2. How helpful were -the problem answers? ,

_____Sample solutions were too briefy I could not o the intermediate steps
Sufficient information was given to solve the problems
____ Sample solutions were too detailed I didn t heed them
. \ .
3. Except for fulfilling the prerequisites, how muc ﬂid;you use other sources ¥¢for
example, imstructor, friends, or other books)-in Jorder to understand the unit?

___AlLot Somewhat ___A Litéle: ___ Not at all

4. How long was this unit in comparison to the amountaof tfme you generally spend on
a lesson (lecture and homework assignment) in a typidal math or science course?

2

> Much ot Somewhat - About Somewhat Much . -
Longer Longer the Same phorter Shorter

5. Were any of the following parts of the unit confusing;dr distracting? (Check
as many as apply.) '

]
.

Prerequisites
Statement of skills and concepts (objectives) ’ 1
Paragraph healings B .
Examples ’ - T
Special Assistance Supplement if present) o
—_Other, please explain, . H

) !

as apply.) | -
Prerequisites ’ {
Statement of skills and concepts (objectives)
Examples
Problems ;
Paragraph headings
Table of Contents
Special Assistance Supplement (if present)
,__Other, please explain

H
Y 3 I

‘

|

Please describe anything in the unit that you did not particulérly like.

[ F . :
i
i

Please describe anything that you found particularly helpful. (Please use the back of
this sheet if you need more-space.) . ;
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¢ ] 1. HOW MONEY GROVS

1.1 Accumulation Functions

Money .is worth money. Banks and otker financial .t

institutions are willing to pay you for the use of your

amount in $

] 1 1 1 1

time in years

money, which they in turn lend to others. €orporations
use the money you invest in their stock for capital ¢
‘improvements such as new factories or‘machinery, and pay lbj

you dividends for the use of your investment.

A quantity of money inkested grows as what you are
paid for its use is added to your 1n1t1a1 1nvestment

How fast it grows is & measure of Low nuch it°is needed K
by the borrower, We will be concerned with various ways

amount in §

‘ of measur1ng ‘how fasts this growth occurs, ; . , , . L \

. | . . f -
An accumulation function a(t) is a function which time in years ,

1c)

has accumulated at. time (t is usually measured in . ‘ - P

gives the amount to wh1c¥?an 1n1t181%1nve°tment of $1 F‘ . -

Lo years,) A change of scale lets you use an accymulation D

! function to determine the value at tihe t of any initial :
investment by multiplying by an appropriate constant,

« Thus if you know th‘é% (3) =1.15, whdch means that an
initial investment o P $1 grows te $1. 15 in 3 yvears,

then in 3 years $16 «grows to 16($1.15) = $18.40, 1 , 1 - 1 1
and $100 grows to $115. The graphs of some

reasonable accumulation ?antions are shown in Figure 1, 1d) i ~/////'__—_“‘.
.While the functions are different in some réspects, you )

- should notice that these functions are all non- N = - g

‘ decreasing functions of t whose values are 1 when t = 0. B ) ,/f////, ) ; ¢ E

The f1rst three of these will turn up again later,

amount in $

1,2 S1mp1e Interest < . S

(:;l

amount in $

1 1 3 - L 1
-, time in years .- e

Figure 1a) shows a particularly attractive

accumnlation function, one whose graph is a straight -
- 1 P P . , Figure 1. SeveralprS51ble accumulation functions.
’ . VN o . . . T A
e P T . S 120
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line. You might choose it a} an accumulation function
by reasoning that, since iﬁiihe first year an invqstment
of $1 grows by an amount (say) i, the gtowth in later
years should be by an amount gf i per year also. You

may have seen problems in interest based on the formula
I= prt,

where I is the amount of interest paid, p is the
principal (the amount originally invested), r is. the
interest rate, and-t is the time the momey was invested.
T computed by this method is called the amount of simple

inqerest earned.

v *
h

) 1
Exercide 1. An investment of $100 earned $27 in
At what rate of
simple interest was the investment made?

interest over a period of 3 years.

/
The graph of the accumulation function for simple

interest is the straight line which passes through: the
points (0,1) and (1,1+i).
calculate the amount to which an original investment of

For any time t, we can

$1 has accomulated from the formula °

-~

a(t) =1+ it,

_-Once we choose the straight line ip Figure la) as
the graph of the accumulation function for simple
interest, we can calculate -valuels for al(t) even when t
is npt an in'teger. " The expre§siEn 1 + {t is defined for
t an§ real mumber. Thus, /2) =1.03 is

how much 1 is worth in six months, and a(7WN365) = 1 +

for i = .06, a

74(.06)/365. 1.012 is what 1 invested on Ja 1 has
accumulated to by the Idgg of March,
4
149 |
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Exércise 2.i It takes 8 months for an investment to earn

$40 at a rate of simple interest of 6% per:year. How

long will it take the investment to earn $100?

a

1.3 Compound Interest

Interest is said to be compounded when it is
reinvested to begin earning interest on itself, Simple
interest has the fanlt that even though there is more
money in fhe fund at later times than at time t = 0,

interest is paid only on the initial investment of 1.

»

- Compound ‘interest is used to calculate the value of the

fund at time t on the basis of the value of the fund at
t - 1.
then in the second year not only does the 1 grow again
by a factor of 1 + i, but the i does too. A hundred

time Thus if in the first year 1 grows to 1 + i,

dollars at 6% interest earns $6 in the first year. If

that $6 is compounded, then in the second year the
fund grows to $106(1.06) = $112:36. Using the
accumulation function for simple interest wonlﬂ yield
al(2) =1 +2(.06) = 1.12, so $100 would grow to only
$112. The extra 36¢ copes from compounding.

The accumunlation function for compound interest is

given by . '
T ) =1+ 0t

Some banks only credit interest to aﬁ account

periodically, and an accumulation function reflecting

such a policy is grapled in lc). The advantages of

working with a contihubns\(and differentiable) function .

are so great, though, that the function in Figure

1b)
more often used in mathematical treatments of compo;ﬁé/;’—,
interest. A bank using the accumulation function ¢

'
hIE )

-

4

»



.

graphed in 1b) could advertise 'interest paid from day
of deposit to day of withdrawal.’

{3

Exercise 3, How long does it take an investment of
$100 to. double at a rate of simple interest of 5%?
How long does it take to double at 5% if interest is
componnded evey year?

0

2. . MEASURING INTEREST

[

2.1 Effecti;e Rates of Interest'

A rate of interest measures the growth of money in
a fund, Ode way to measure is given by the effective
rate of 1nterest, wh1ch gives- the rate of growth over-a
partftular year per Gnit 1nvested at the ﬂeg1nn1ng of
the year. - If $30 grows. to $40 ‘in a year, for
example, the interest earned whs,$40 - $30 =" $10,
and the rate of growth for that yeer was 10/30 = .33, or

¢

33%- During “the nth year, an initial investment of 1
grows from a(n - 1) to a(n), so dencting the effective

rate of interest Qur1ng the n r year by’ ln' we have

0

(4) i - 3(n) - a(n - 1) S

n a(n - 1)

.

For example, if $93 at the beginning of, the fif'th year
{i.e. at time t'= 4) grows to $98 at the end of that
year, the effective rate of interest earned dur1ng the
fifth year, is, is given by

l °©

. a(5) - a(4)  98-93 '
() i = & = 5 = -0538, or 5.38.

. A ¢

a(n) . 1 growth in
i : nth year
a(n-1) . _ (numerator)

amount at
beginning
> of nt year
(dengminator)

amount
' ws ¢

nth
. year J

0 1 n-1 ° n tihe

° Figure Sorting'out in

1 g N X .
Exﬁrcuse’4 . During the, first year a,fund grows from_
$10q0 tQ $1060 By the end of the second year it
has.grown to $1121, - In which year is the effective
rate of interest earned g;eq%er? ’
: . N e _ . ] ’ ; :
If we Lnow a formula for a(n) then we canm ‘fiad 1n

as a funct1on of n, For 1nstance, 1f a(n) is the .

x>

aécumulat1on function for s1mp1e interest, then

(6. i - am - a(n - }) o L
., 1 _aln ='1)
.« o % .
.2 l#in- (1 + i(n - 1)) .
1A4\}(n - 1) - . .
. . sty " . B .

: _d
<™ 1+ i(n - 1),’ )

Since this ‘last express1on gets smaller asin,gets -
larger/ simple 1nterest yields ah ever decrieasing

effect1Ve rate of, interest. This fact jibes with the
criticidm of simple interest mentioned An Section 1,3

.‘ ’ - J_A:3 Py 6
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Ot the other hand, for the accumulation function
=(1+ 1)t

Y

" a(t)

we have ”
;o alm) - s 1) ' ,
¢ n a(n >~ 1)
B N T L ’ .o
] - (1 + 1)1 -
) A a s YL (g 1n?
(1 + 1)n 1

| _ 4 +.0)% 1 4y s i) ) *
o (1 + 1)k
= 1 + i - 1 = i.

‘Hence' compound interest gives a constant effective rate

of interest, always equal to the rate of irnterest in the

.

% 'rate of 6% 7 &b ? - 5

I

.

‘9
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e . s A e
first year. This is one reason for viewing compoiind
interest as the fairest or most natural,way to cbmpute
interest.
BY

of interest
17.7 years, ¢

effective
L

Exercise 5. Show that at'an effectzve rate
of 4%, money left on deposit will double in

_jHow long 4oes it take money to donﬁle at an

. Fa
< -

& ) v

bd .

2.2 Nominal Rates-of-Interest’ .

. . -

¢ How often intene;%&éi' the

3 . . . . .
account to begin earning interest on its own, can
The '

t

compounded,ipr’added to

influence tle rate of growth of an investment,
jaccnmulation function\fqr compound interest was built on
A thi/assumpt;on that inteTest was compounded at the end

of ‘evety year, but it is possible to build accumufatxon

" functions based on other‘assumptzon§. If interest on an
investment of 1 were to be compounded every six ;:;thsv

at a rate of 2.5%, 025 is

ERIC . .

then after six months

3 ot

T i o . [ i
} Lo U
deposxtgd and after.the second six months th1s amount

o

gEIrows to o

(1.025).025 + 1.025 = (1.025)2

= 1.050625.

If 1 were compoqnded annually at 5%, it would grow to
only 1.05.
of 1.050625 are there because the interest deposzted at
the end of six months earned interest itself the second

7e keeép track of how often the interest is

Those extra four decimal places on the end

half year.

N ¢
- compounded by saying that the money earns interest .at a

nominal rate of 5% compounded semxannuallx The

calculation above shows that a nominal’ ‘rate of 5% -

»oompounded semxannually is equivalent to an effective

rate of interest of 5.0625%.
rate*of 4.939% compounded semiannually is equivalent»to
an effective rate of 5% because (1 + 04939/2)2 1.05.

Alternately, a nominal -

.. It seems reasonable that the moré often interest is
compounded, the faster, is"the rdte of growth of money in
a fund. The following table shows this to be true, but
we will see that the rate of growth does not increase

without bound. .

)

TABLE 1

Effect of More Frequent Compounding
. mm on a Nominal Rate of 5% '

Number of times per year
Interest is compounded:

Coxresponding
effective :ﬂte:
(1 + .05/n) =1

1. > (annuall?) 5%
’ 2 {semiannually) ; 5.0625%
4 (quarterly) . 5.0945% ’ .
12 ‘(monthly) 5.1162% '
52 (wce}ly) 5.1246% .
365 (daily) o 5.1267%
21900 (evofy minute) 5.1271% -
© - ) - g
. ’ o 1 i d
. . . .
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Tﬁg tumber in the last column is (1 + .05/n)1 _ 1, ~
expressed as-a percentage; where n is the npmber of

times per year that*intgreét is'comﬁznnded-(called
interest conversion periods) given in the first colunn,
The largest vaiue to hope for in the last column would
be ’

.

(8) 1im (1 + .05/n)"
nde - )

~
-

This would correspond to a fund in which interest is-.
compounded continuously, so that each instant the
interest earned begins earning interest on its own.

Exercise 6. What effective rate of interest corresponds.

to a nominal rate of 8% compounded quarterly?

Suppose that $100 was invested at a

of 4% compounded gquarterly for a period of

Yarned?

Exercise 7.
nominal rate
18 months, How much interest was

e

-

Another way to describe the growtk of money is to

compute hoﬁinalvinterest rates that are necessary to

yield an effective rate of interest of- 5% ate iear. If
interest is to be ¢ompounded k times a year,/at a

nominal rate i, then we want .
H
!

(1 + i/k)% = 1,05,

%

¥

('This gives . )
g i1+ ik = (thos) /e
so ‘ S . -
(9) 1= k((1.05)k _ gy .1

Table 2 shows values of i (as percentages) for selected
values of k.. T

o 115 - :

‘z{ .

‘interest computed every second ?

TABLE 2

Effect of More‘Frequent Compounding to Yield
an Effective Rate of 5%, Computed from Eq. (9)

Number of times per year
interest is compounded (k)

Nominal rate i required =
to yield 5% effective

1 ~ %
- 2 4193 90%
4 . 4.908%
.12 4.8889%
52 ‘ 4.8813%
365 8 © 4.8793

T ———

21900 4.8790%

[
You might suscht from the values shown in Table 2

" that the more often interest is compounded, the smaller

the nominal rate must be to achieve a given effective
rate, °Thgéﬁﬁa11est value to hope for here is

(10) 1§m n((1.09)" _ 1. q@f,
nm

- ~

Vhat expression'would have ‘to be evaluated
to compute the value of { in Table 2 corresponding to

Exercise 8.

(3
h

2.3 Notation -

A notation to handle nominal rates of interest must
include the number of times interest is reinvested per
year, The sﬁindard way of writing a nominal interest
rate of i compounded nf times 'a year is i n (read as i
upﬁer n), This rate specifies an effective rake of
interest of i/n compounded every nt fraction of a year.
Hence i is a nominal rate of i compounded

X (1 X - X
semiannually and i is a nominal rate of i compounded

|

o 14y 1o




month;y.] The last column of Table. 1 then gives, for

instance, the effective rate of 1nterest corresponding
to .05(¥ is 5.0945%. Money in a fund earning 5.0945%.
interest compounded once a year grows just as fast as
money invested at a nominal rate of 5% compounded

quarterly.

, .

Exercise. 9.

Use Table 1 to find .05(12),

Bxercise 10. Friendly. Harry's Loan Shoppe offers
unsecured loans of up to $500 with interest paymedts

of 5% per month (these payments are called 'vigorish’ in
the trade).

What effective rate does he earn on these investments?
| ) -

Write the nominal annual rate Harry earns.

.
‘¢
3. THE FORCE OF INTEREST
3.1 How to Use the Derivative
The derivative 0f a function at a point has a
natural interpretation as the rate of change of: the
function at that point, so.it would be nice to harmess
" the derivative of the accumulation function to describe
the rate of growth of a monetary.fund due to interest v

_accruing, The derivative of the accumulation function
alone, however, is inappropriate because it is .
influenced by the value of a(t), whereas interest rates

oted before were concerned not with aqFolute growth
‘A fund s

with $200 in it earns interest twice as fast (it earns

but with growth relative to .the amount invested.

twice as much in interest in a given time) as a fund
with *100 in it,
for each. i p

SN P P

yet the rate of interest is the same

11

¥

In Equation (4) the absolute growth of the fund is
given by a(n) - a(n - 1), but i » the effective rate of
is that difference divided by a(n = 1). Ve
saf in Section 2.1 that if the accumulation function is

interest,

the one for simple interest then there is g decreasing
But when a(t) =1 +'it,
We need to take into account the

effective rate of interest.

da/dt = i,

value of a(t) as we11 to get the true p1cture of the
+ .

a constant.

growth of money.

3.2 A Rate of Change per Unit Invested

What matters in the co&putatiou of an effective —_
rgﬁe of interest in }s not only the growth during the
n year but also the amount thatgthe n  year started
with. To measure the instantaneouns rate of\gggpge of
a(t) we will use the derivative of a(t), but the

instantaneous rate of change per unit 1nvested is the

measure of the rate of change associated w1th interest’
With this in mind, we define the force of 1nterest

function &(t) associated with a,particular accumulation

function a(t) by

. 5(t) =“é’(¥7/§3¥).

The function 8(t) gives the relative change in a(tY.

For a given t, 8(t) will usually “be guven as a
decxmal which can be expressed as a percént to measure
how fast the fund is growing at that time. A useful
observation is that 8(t) = d(1n(a(t)))/dt. To see why

this-is true, notice firjt that a(t) is 1 when t is O~

and nondecteas{ng thereafter, so a(t) > 0 and there is
no danger that 1n a(t) will be undefined. An
application of the Chain Rule gives
(12) 5(t) = a(ln(a(t)))/aPE A= dta(t)
r
.o 143 ~
s . 12




2 L
For exnmgle, if BN : Thus . . ‘
‘ . | .(2) *
, .m(t) =(1+ )t .’ 1+ / 2 . ‘
A . then ) : gives. the same accumnlataonifunction as N ' 'S
. .
. Gt
8(t) = d(1n(1 + )%)/qa¢ - 1+ =a),
(13) = d(t 1n(1 + 4))/dt Do e
g , . /\j
. = 1n(1 + i), dt/dt . . '
—tm+ .. . RS

\ ) : !
The. constant 1n(1 + i) is the force of 1nterest at any | T
time t if we assume a(t). is the accumnlatxon funct1on

for compound "interest.$ s

-

1+t

‘
a

a(tj =

s = -
n \
Exercise 11. Show a(t) =1 + ;2 is an increasing

function for t > 0 (and therefore an‘allowable - . w ; l
accumulation function)., Calculate 8(t), and find &(4). : % T 1 .
. , : .2
Exercise 12. Find &(t) for a(t) the accumulation . o - ) »
function for simple interest. How does 8(t) behave as t Figure 3. Secants and a tangent: Average rates
. . o . . . of growth and an instantaneous rate.
increases? . . ot . .
; — - - The average rate of growth of the function a(t) =
7N .
3.3 Relation to Other Measurements of Interest (1 + 1) over the interval [0,11 is given by the
7 . . . difference uotient,
E'?% We have given the most emphasis so far to compound \ * B quog r 0 K
interest, and shall continmue to do so. The function (14)" . (@ +§) - @+ §) =i, o |
. a(t) = (1 + i)t can alse be represented in terms of 1-0 : .
- nominal interest rates, If 1(2),15 the nominal rate . This means that the averagg rate of growth over the
compounded sem1annnhlly whi‘ﬂ yields the effective rate first year is i. ' Equivalently, i is the slope of the
i, then . ' secant line between (0,1) and 1,1+ 1), Thekéverage
.(2) '~2 . ) F rate of growth over the interval [0,1/2] is
; } (1 +1 12Y% =1 + i, - , e - A '
: = S C 1/2 - N :
and so ° - . ) (15) (1 + 1;/2 - 0(1_+_1) = 2((1 + i)1/2 -q) = i(2,)
S a2 gy g = e " ) '
150 - ' T 5]
‘o« 13 4 14
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To verif& that the last equality holds, solve the
) 2)/2)2

equation (1 + i =1+ifori o

The derivative is defined as the limit of a
difference quotiént as the width of the interval
approaches zero. For the portion of a year from time 0

to time 1/n, theﬁfsfference guotient is

. 1/n .
(16) (1 + 1)t a_+ 1) - a((1 + i)lln -1 = i(n)‘
1/n -0
Tte width of the interval here is 1/n, and we can malke
the width approach 0 by letting n get larger. Thenlthe
instantaneous rate of change of the accumulation :
function a(t) = (1 + ﬁkkjat t =0 is
o 1/n . o
(1 + d) -+ )
' =
2*(0) = lin 1/n - 0
= 1im 1) \
e .
) »

The limit in this equation is.the same as the limit that
occurred in Section 2.2 for i = 5%, but-now we can
evaruate it as d(a(t))/dt at t = 0 for a(t) = (1 + i)t
It is ’ -

. t 1nid.05 _ t 1n 1.05

d/dt e (1n 1.0%),

whickais just 1n 1 05‘ when t = 0. Yougean verify that
in 1 0.048790 to 6 decimal places to see that the
Rast entry in Table 2 hits pretty close. The decreasing
numbers in the second column of Table 2 correspond to

the (exagerateddy) decrcasing slopes as the width of the

-~

subinterval gets smaller in Figure 3.

- 8

Find 1

Exercise 13, (0.06)-(2),
‘ - & nye . ..
.l:)EZ A .15

&

3.4 Cont@nuous Compounding aqd Yield Rates

Banks are limited by law as to the largest interest

Such laws are
infended to keep banks from offering fiscally unsound

-rate they can pay on savings accounts,
rates in the spirit of c%mpetition. A nominal rate so™
specified, however, can Be@bompounded by the bank as
often as it likes. The effect of compounding more often
is to raise the effective rate of interest, as
illustrated in TableMl with a nominal rate of 5%. The
highest effective rate a b%nk can pay is found by taking
the nominal rate quoted to be &(t). Thus if the nominal
fate quoted is 5%, the effective rate i can be found by,
solvxng the equatxon . R 4

. l l
: 1n(1 + i) = .05, ° o -
& N
The equation is solved by exponentiating both sides to
get. - . .

*

In(1 + i) _ .05
e e “.— ’ . N
so that o
/ e
1 + 1 = e.Os ‘ *
and, <
i=e0-4- .051271. ~ .

The valué of i found in this manner is often called the
yield rate,

say, 'Your savings earn interest at an annual rate of

so that aEtypical bank ad%ertisement might

5%, compounded continuously to nge you a wh0pp1ng 5. 13%
annual yxeld ' since there is little
dxfference-ﬁn-the rate whether a bank compounds da11y or
+continuougly (see the last entry in,Table 1), more often
the yield rate quoted is based on a daily compounding of
interest to spare the bank from having to explain

calculus to its customers. . '
¥ - *®

. 153 1

In practice,
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Exercise 14

What yield rate is associated with g;
noqinallrate of 8%? 4

* Exercise 15. -What nominal rate is associated with a

yield rate of 8§%?
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MODEL EXAM | o

¥

Why can’'t accumulation functions be used to model -

the behavior of common stocks?

Which of the following functions are suitable to be
accumilation functions?

A
a) t2 41 b) t2 é t ) 1-t2 ey 1
Suppose you know &(t) has the value 0.045 for any t.

Describe a(t).

-

of interest corresponds to a

What effecfivr
nominal rate

rat
of, 1£% compounded monthly?

Rank the following effective interest ratizzgn
ascending order: 0.05, 0:05 2), 0.05(4). n{1.05) .

hen does 8(t) = a’'(t)?

A bank bays 8h compounded continuously. What rate
compounded yearly must another| bank pay for depgﬁjts
to grow as fast as at the first bank?

Py -

B

e

[
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. , ANSWERS TO EXERCISES
| * :

L 1. Ve are given I =27, p = 100, and t = 3. °

Substitution into I = prt gives r = ,09, or 9%.
. 2. Eigit months is 2/3 of a year. Using t = 2/3, I =

5 40, and r = ,06 in X = prt gives p = 1000, Now we
&ant t given p = 1000, r = qg, and I = 100, so
pluggxng this information into I = prt gives t =

" 5/3 years., or 20 ‘months.

$100 grows to $200 in the Same amount;: of time

- it takes $1 to grow to $2. Solve a(t) =1 + it
=1+ .,05t=2fort to find t = 20 yeqrs, for
simple interest. For compound interest we must
solve a(t) = (1 + i)t = (1.05)t = 2, Taking the
natural logarithm .of both sides gives 1,!1(1.05)t =
in 2, =1n 2/1n 1.05

i, 1a(1) - a(0))/a(0) = (1060 - 1000)/1000 = |06,
= ta(2) - a(1))/a(1) =£(1121 - 1060/1060 =
{?he effective rate is greater the first

so t = 14.2 years.

“;W’"

and i
.0575.
year.,

. ] . - e m z LU

Solve 1.04t‘= 2 by ﬂlking the natural logarithm of
both sides to get t = 1n 2/1n 1.04 = 17.7. Jhen i
= .06, t'= 1n"2/1n 1.06 = 11.9 and when;i = .08, t
= 1n 2/Ln 1.08 = 9.0. A handy. rule of thumb called
the Rule of 72 is that the time it takes a given
amount of money to double at ;ate i is aproximately

72 divided by the interest rate expressed as

- 72/12 = 6 years.
6. 8% componnded qnarteq}y is 2% every quarter, During
* gne_year (four qnarters) 1 grows to (1.02)
1 0824, so the effeetxve rate is ,0824, or 8.24%.

I 2 :

%

SR -
Ha ) 19
‘j:?? -

e

percent, Money invested at 12% will double 1n a?out.

10.

11,

12.

13.

15.

e N,

100 grew to. (1.01)® 100 = 106.51. The ‘interest .
earned is $6.51. . \ ’

» ’ ’

There are 21900x60 = 1 31“QPOO 7econds in a year. .
We would have to compute

1314000({1.05)

0512 = 051162, or 5.1160%°

1/1314000 “ . “

The nominal annual cate he earns. is 12(5%) .= 60%.

If Harry's customers don't pay on time, he can

, charge them interest on the unpaid 1nterest to reap
il an effective annudl rate of 1 051 -'1=o0. 796, or )

almost 80%. gThat is why he drives an E1 Dorado.

> ] *
a(0 %1 +0% =1, anda’(t) =2t 0 for t 3 0
says that a(t) is an 1ncreasxng function for t > 0.
8(t) = 2t/1 + t° and 5(4) ='8/17.
If a(t) =1 + it, then a'(t) = i and &8(t) = i/1 +
it. This expreéssion decreases as t increasesf just
as ?n decreases for simple interest.
" - ~
1n 1.06 = 0 osmgﬁ a

> =

Solve 1n(¥ + i) = .08 to get i = .0833, or 8.33%.

|
Solve 1n(1.08) = i to get i = 0.0770, or 7.7%. |
” |

> t
.

I SOLUTYONS TO MODEL EXAM

Unfortunately, common stocks can not be relied on
not to decrease fn}value. S
",

(a) and (d) are.
£ 1. (c) is not suitable because it is decreasing
for t > 0. /

(b) is not suitabte because a(0)

3(t) was constant, and equal to 1n(1 + 1), when a(J) ’
was an accumulatxon functxon for compound interest.

With 8(t) = .045, a(t) =-e- 045t

- N ’

PIORY
23




o

10112 = 1.1268, s0 i = 12 685,
18(1.08) ¢ .05 < 052 ¢ 054
6. Y (t)/a(t) = a' (t) if a(t) 1. This happens-when t ) . N
=0 s - \
. X . . .08 -
7. The effective rate paid by the first bank is e - )
1 = 0.,0833, or 8.33%. The second bank must pay / .
8.33% compounded annually,

N e
g
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- < W ! Return to:
&%); STUDENT FORM 1 EDC/UMAP

.. ) . 55 Chapel St.
Request for Help Newton,- MA 02160

s
3
T 4

-~ Student: Ié you have trouble with a é;ecific part of tﬁis unit, please f1l1l
" out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit. :

Your Name " Unit No.

Page

O Upper
C)ﬂiddle ‘ Paragraph 5 Text
O Lower Problem No. ~

Modei Exam.
Problem No.

w7

Sectign

Description of Difficulty: (Please be specific)

{
/

\ =

Instructor: Please indicate your regolution of the difficulty in this box.

-

(::) Corrected errors in materials. List corrections here:

~

f

]

O Gave student better explanation, example, or procedure than in unit. v
e Give brief outline of your addition here: ¥

£

-~

/ -

Ny

»

Assisted student in acquiring général learning and problem-solving
- skills (not using examples from this unit.) } -

' : /

Instructor's Signature .

[

Please 'use reverse if fecessary.
" .

Y
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v Return to:
, ) STUDENT FORM 2 EDC/UMAP
s ; . 55 Chapel St.

Unit Questionnaire

Name s "“Unit No. Date

Institution Course No.

Check the choice for each question that comes closest to your personal opinion.

l. How useful was the amount of detail;in the unit?

____Not enough detail to understand tBe unit "
~ Unit would have been clearer with more detail
- ___Appropriate amount of detail
_____Unit was occasionally too detdiled, but this was not distracting -
" Too much detail; I was often distracted A

2. How helpful were the problem answers? : -

'

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems. ~
Sample solutions were too detailed;’'Il didn't need them
) ‘ ’ - )
3. Except for fulfilling the prerequisites, how much did you use other sources (for -
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat ] A Little . Not at all

4. How long was this unit in comparison to the amount Qf time you generally spend on
a lesson (lecture ‘and homework assignment) in a typical math or science course?

Much Somewhat About Somewhat Much
Longer . Longer - the Same ~  Shorter Shorter

”5. Were any of the following;parts of the unit confusing or distracting? (Check

>as many as apply.)

L

- ?rerequisites
’ Statement of skills and concepts (objectives)
-Paragraph headings . .
Examples e oot
Special Assistance Supplement (1f present)
Other, please explain

L

L,

6. Were any of the following parts of the unit particularly helpful? (Check as many -
asiapply ) o

Prerequisites N
Statement of skills and concepts (objectives)

Examples

Problems

Paragraph headings ~ .
Table ¢f Content '
Special Assistance Supplement (if present) ' . ' ’
Other, please explain’ . L

fied . -
~

v

’Please describe anything in the unit that you did not particularly like.

N

Please describe anything that yey found particularly helpful. (Please use the back of
this sheet 1if syou need more spacé€.)

L
g
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